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Abstract

The knowledge compilation (KC) map [1] can be viewed as a multi-criteria evalu-
ation of a number of target classes of representations for propositional KC. Using
this map, the choice of a class for a given application can be made, considering
both the space efficiency of it (i.e., its ability to represent information using lit-
tle space), and its time efficiency, i.e., the queries and transformations which can
be achieved in polynomial time, among those of interest for the application un-
der consideration. When no class of propositional representations offers all the
transformations one would expect, some of them can be left implicit. This is the
key idea underlying the concept of closure introduced here: instead of performing
computationally expensive transformations, one just remembers that they have to
be done. In this paper, we investigate the disjunctive closure principles, i.e., dis-
junction, existential quantification, and their combinations. We provide several
characterization results concerning the corresponding closures. We also extend
the KC map with new propositional languages obtained as disjunctive closures of
several incomplete propositional languages, including the well-known KROM (the
CNF formulae containing only binary clauses), HORN (the CNF formulae contain-
ing only Horn clauses), and AFF (the affine language, which is the set of conjunc-
tions of XOR-clauses). Each introduced language is evaluated along the lines of
the KC map.

Keywords: Knowledge representation, knowledge compilation, computational
complexity.
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1. Introduction

Knowledge compilation (KC) consists of a family of approaches which aim
at improving the efficiency of some computational tasks — typically, saving on-
line computation time — via pre-processing. The pre-processing step consists in
turning some pieces of available information into a compiled form, during an off-
line compilation phase.

KC gathers a number of research lines focusing on different problems, [5, 6,
7, 8,9, 10, 11, 12]), ranging from theoretical ones, where the key question is the
compilability issue, i.e., determining whether pre-processing can lower the com-
putational complexity of some tasks, to more practical ones, especially the design
of compilation algorithms for some specific tasks like clausal entailment. An im-
portant research line [13, 1] is concerned with the issue of choosing a target class
of representations for KC. In [1], the authors argue that the choice of a target
class for a compilation purpose must be based both on its time efficiency, defined
as the set of queries and transformations which can be achieved in polynomial
time when the pieces of data to be exploited are represented in the class, as well
as the space efficiency of the class, i.e., its ability to represent data using little
space. Thus, the KC map [1] is an evaluation of a dozen of significant proposi-
tional classes L, also called propositional fragments, w.r.t. several dimensions:
the space efficiency (aka succinctness) of the fragment and its time efficiency (aka
tractability), i.e., the class of queries and transformations it supports (or not) in
polynomial time, often under standard assumptions from complexity theory. The
KC map is intended to serve as a guide for selecting the “right” target class given
the requirements imposed by the application under consideration.

The KC map reported in [1] has already been extended to other propositional
classes, queries and transformations in a number of subsequent papers, including
[14,15,16,17,18, 2,4, 19, 20, 21, 3, 22]. In all those papers, queries and transfor-
mations are also viewed as properties of classes of propositional representations
L. One says that £ offers or satisfies a given query or a transformation when there
exists a polynomial-time algorithm to achieve it, provided that the input represen-
tations are from £. When such an algorithm does not exist for sure or unless P =
NP, one says that £ does not offer the query or the transformation.

When no class of propositional representations offers all the transformations
one would expect, an approach consists in leaving some of them implicit. This is
the key idea underlying closure principles as introduced in this paper: instead of
performing some computationally expensive transformations on representations,
one just remembers in the representations that the transformations have to be done.



This leads to extend the previous classes to new ones, which are at least as suc-
cinct, and for which implicit transformations are for free. Another nice effect of
some implicit transformations on incomplete propositional languages is to recover
completeness, i.e., the ability to represent any Boolean function.

In this paper, we investigate the disjunctive closure principles, i.e., disjunc-
tion [V], existential quantification [d], and their combinations. The disjunction
principle [V] when applied to a class £ of representations leads to a class L[V],
the disjunction closure of £, which qualifies disjunctions of representations from
L, while the existential quantification principle [J] applied to a class £ leads to
a class £[d], the existential closure of £, which qualifies existentially quantified
representations from £. L[V, ], the full disjunctive closure of £, is obtained by
applying both disjunctive closure principles to £. We provide a number of char-
acterization results concerning the corresponding closures. Especially, we show
that applying at most once each disjunctive closure principle on £ is enough, in
the sense that applying one of them twice or more leads to classes polynomially
equivalent to £. We also identify the queries and transformations which are pre-
served by applying disjunctive closure principles.

In addition, we extend the KC map with new classes of propositional rep-
resentations obtained as disjunctive closures of several incomplete propositional
languages, namely the well-known Krom CNF fragment KROM (also known as
the bijunctive fragment) [23] the Horn CNF fragment HORN [24], and the affine
fragment AFF (also known as the biconditional fragment) [25], as well as K/H
(Krom or Horn CNF formulae) and renH, the language of renamable Horn CNF
formulae [26]. Each of these languages is a well-known polynomial class for the
satisfiability problem SAT (i.e., it offers CO), but none of them is fully expres-
sive w.r.t. propositional logic (there exist propositional formulae which cannot be
represented in any of them), which drastically restricts their attractiveness for the
KC purpose. Importantly, switching from any of those languages to its disjunc-
tion closure or to its full disjunctive closure leads to recover a fully expressive
propositional language. This is crucial for many applications.

The rest of the paper is organized as follows. In Section 2, some formal prelim-
inaries about graph-based, quantified, propositional representations are provided.
In Section 3, we make precise the queries and transformations of interest, and
extend the notions of expressiveness, succinctness and polynomial translations to
any subsets of the class of graph-based, quantified, propositional representations.
In Section 4, the concepts of disjunctive closures of a class of propositional rep-
resentations are defined and we derive a number of characterization results about
them. In Section 5, the disjunctive closures of KROM, HORN, K/H, renH, and



AFF are considered and we analyze them along the lines of the KC map. Finally,
Section 6 concludes the paper by discussing the results, pointing out the disjunc-
tive closures which appear as the best target classes for the KC purpose; it also
gives some perspectives for further research.

2. Quantified Propositional Representations

2.1. Syntax

In this paper, we consider subsets of the class C'-~QDAG of quantified proposi-
tional representations over a countably infinite set PS of propositional variables,
given a finite set C' of propositional connectives. Each connective ¢ € C' is sup-
posed to have a fixed, finite arity. Leaf nodes of such DAGs are labeled by literals,
where a literal (over V' C PS) is an element x € V' (a positive literal) or a negated
one —x (a negative literal), or a Boolean constant (T and L). Ly is the set of all
literals over V. Literal [ is the complementary literal of literal /, so that T=1,
1 = T,% = -z and =% = z. For a literal [ different from a Boolean constant,
var(l) denotes the corresponding variable: for z € PS, we have var(x) = x and
var(—z) = .

Formally, C'-QDAG is given by:

Definition 1 (C'-QDAG). C'-QDAG is the set of all finite, single-rooted DAGs (also
referred to as “representations”) o where:

e cach leaf node of « is labeled by a literal | over PS,

e cach internal node of « is labeled by a connective ¢ € C and has as many
children as required by c (it is then called a c-node), or is labeled by a
quantification 3z or Vx (where x € PS) and has a single child.!

The size |a| of a C-QDAG representation « is the number of nodes plus the
number of arcs in the DAG. Var(«) denotes the set of free variables of a, i.e.,
those variables x for which there exists a leaf node N, of « labelled by a literal [
such that var(l) = z and there is a path from the root of « to IV, such that no node
from it is labelled by Jx or V. Clearly enough, determining whether a given x €

'Each binary connective ¢ which is associative (like A, V, @) corresponds to a family of
connectives (with the same name c) of arity ¢ with ¢ > 2. For each ¢ > 2, the connective
c of arity i is defined by: for every i-tuple (x1,...,z;) of Boolean values, c¢(z1,...,2;) =
c(xy, ez, (... e(xim, ) .- .).



PS belongs to Var(c) can be done in time polynomial in the size of «;? similarly,
computing Var(«a) can also be achieved in time polynomial in the size of «.
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Figure 1: A C-QDAG representation with C' = {A,V,—, ®}.

Figure 1 presents a C'-QDAG representation o with C' = {A, vV, =, @}. Its set
of free variables is Var(a) = {q,7}.

As Figure 1 exemplifies it, a C'~QDAG mainly corresponds to a Quantified
Boolean Circuit [27]. Abusing words, such DAG-based representations are also
referred to as “formulae” in the KC literature, and classes of such representations
are called ’languages”. In the following, we will only use the term “formula”
for designating a tree-shaped representation of a Boolean function, and the term
“language” for sets of formulae. Figure 2 gives a C—~QDAG formula with C' =
{N,V, -, &}

Many classes of propositional representations considered so far as target classes
for KC are subsets of C—QDAG with C' = {A,V, =, @}, and typically subsets of
C'-DAG, the subset of C-QDAG with C' = {A, V, =, &} where no node labeled by
a quantification is allowed. Especially, the propositional DAGs considered in [14]
are C—DAG representations with C' = {A, v, =}, and the classes considered in [1]

2The algorithm consists in labeling each node N of « by a set of variables Vy; the nodes
are considered in inverse topological ordering, Viy = war(l) when N is a leaf node labeled by
I, VN = Vis \ {z} when N is an internal node labeled by 3= or Va and M is the child of N,
Vy =U M, child of vy Vs, when N is an internal node labeled by a connective ¢ € C; Var(a) is
equal to Vi, where N, is the root of .
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Figure 2: A C—QDAG formula with C' = {A,V, -, ®}.

are subsets of DAG-NNF (the non-quantified DAGs with C' = {A, V}). Clearly
enough, for each non-quantified representation « from C'-DAG, Var(«) coincides
with the set of variables occurring in a.

In Figure 1, the DAG rooted at the A node is a C'~DAG representation with C' =
{A,V, =} and the DAG rooted at the V node is a DAG-NNF representation. DNNF
is the subset of DAG-NNF consisting of DAGs where each A-node A(aq, ..., ax)
is decomposable, which means that Vi, j € {1,...,k}, if i # j then Var(a;) N
Var(ca;) = (). d-DNNF is the subset of DNNF where every V-node V(ay, . .., ay)
is deterministic, which means that Vi,j € {1,...,k}, if ¢ # j then oy A «; is
inconsistent. BDD is the subset of C'-DAG with C' = {ite} which consists of
DAGs «a such that every leaf node is labelled by a Boolean constant, T or L. ite
is a ternary connective ("ite” stands for “if ... then ... else ...”). Usually, instead of
labeling a decision node N = (z, N, N_) of a BDD formula by the name of the
connective used (i.e., "ite”’) and considering three children for it (one for x, one
for N, and one for V_), N is labelled by = and has only two children (one for /N,
and one for NV_). Given a total, strict ordering < over PSS, the class OBDD. is the
subset of BDD which consists of DAGs « such that every path from the root of «
to a leaf node is compatible with <.

As usual, a clause (resp. a term) is a finite disjunction (resp. conjunction)
of literals. CLAUSE is the subset of DAG-NNF consisting of all clauses, and
TERM is the subset of DAG-NNF consisting of all terms. NNF is the subset of



DAG-NNF consisting of formulae (i.e., tree-shaped representations). CNF is the
subset of NNF consisting of all conjunctions of clauses, while DNF is the subset
of NNF consisting of all disjunctions of terms. P I is the subset of CNF consisting
of prime implicates formulae (also known as Blake formulae); a PT formula is a
CNF formula, the conjunction of all clauses from the set PI () for some C-QDAG
representation «; PI(«) contains the prime implicates of «, i.e., the logically
strongest clauses which are implied by « (one representative per equivalence class
is considered, only). An essential prime implicate of « is a prime implicate ¢ of
such that if the clause equivalent to § is removed from PI(«), the conjunction of
the clauses from the resulting set is no longer equivalent to «. For instance, if o =
(p= ¢)A\(g = r)A(p = (rVs)), then PI(«) = {—pVq, ~qVr,—pVr}. -pVqand
—q V r are essential prime implicates of «, while —p V7 is not. An important point
is that any CNF formula equivalent to a propositional representation o contains
(up to logical equivalence) every essential prime implicate of a.

For space reasons, we do not provide hereafter the definitions of the proposi-
tional classes of representations DNNFt and IP (see [1, 18] for formal definitions).

2.2. Semantics

Let us recall that an interpretation (or world) over V' C PS is a mapping w
from V to BOOL = {0,1}. Interpretations are sometimes viewed as subsets of
PS, consisting of all the variables that are set to 1 by the interpretations. When a
total, strict ordering < over PS is considered, the restriction of an interpretation
w over a finite subset {z1,...,x,} of PS can also be represented as a bit vector;
for instance, the restriction of w over {a, b, ¢} such that w(a) = 1, w(b) = 0, and
w(c) = 0 can be represented as 100 when a, b, ¢ are such that a < b < ¢. For any
x € V,w_, 1s the interpretation over V' which coincides with w on every variable
of V, except on x; formally, w_,(y) = w(y) ify # z,=1 — w(x) if y = x.

We are now ready to define the semantics of C'~QDAG representations in an
interpretation w over PS:

Definition 2 (semantics of C'-QDAG representations). The semantics of a C'-QDAG

representation « in an interpretation w over PS' is the truth value [o](w) from
BOOL defined inductively as follows:

o ifao =T, then [a](w) = 1.
e ifao= 1, then [a](w) = 0.

e if ais a positive literal x, then [o](w) = w(z).
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e if a is a negative literal —x, then [a](w) = 1 — w(x).

o ifa=c(p,...,B,), where c € C has arity n,
then [a]() = [N [B]()),
where [c] is the Boolean function from BOOL" to BOOL,
which is the semantics of c.

o ifa=3x.p, then [a](w) = 1iff [A](w) =1 or [f](w—z) = 1.
o ifa=Vx.f, then [a](w) = 1 iff [A](w) = 1 and [B](w_.) = 1.

An interpretation w over PS is said to be a model of @« € C'-QDAG, noted
w = «, if and only if [a](w) = 1. If « has a model, then it is consistent; if every
interpretation over PS is a model of «, then « is valid. If every model of « is
a model of 5 € C-QDAG, then [ is a logical consequence of a, noted o = f5.
Mod () denotes the set of models of o over Var(«). Furthermore, when both
a | fand 8 = « hold, a and 3 are logically equivalent, noted o = f3.

For instance, with C' = {A,V,—, @}, the C-QDAG representation given in
Figure 1 is equivalent to the C~QDAG formula given in Figure 2.

By structural induction one can easily show that the semantics of any C'-QDAG
representation o depends only on its free variables, in the sense that, for any inter-
pretation w’ over PS which coincides with a given interpretation w on all the free
variables of a, w is a model of « if and only if w’ is a model of . Accordingly, the
semantics of a C'~QDAG representation « in an interpretation w over PS is fully
determined by « and the restriction of w over Var(a).

Clearly enough, renaming at the same time a quantified occurrence of a vari-
able x in a quantification Jz or Vz occurring in a C-QDAG formula «, and every
occurrence of x in o which depends on the quantification leads to a C'~QDAG for-
mula equivalent to «. Furthermore, such a renaming process can be achieved in
time linear in the size of «.

However, things are much more tricky when general C'-~QDAG representations
(not reduced to formulae) are considered. Consider for instance the quantifica-
tion Jg occurring in the C'-QDAG representation « reported at Figure 1, where
C = {A,V,—, ®}. The occurrence of variable ¢ in the leaf of « labelled with lit-
eral ¢ depends on this quantification. Replacing ¢ by the fresh variable s in J¢ and
at this occurrence would not lead to a representation equivalent to « since s would
be a free variable of the resulting representation. Indeed, there exist four paths
from the root of « to that leaf, and three of them do not contain any quantified
occurrence of ¢. This is salient on the C'-QDAG formula equivalent to « reported

8



at Figure 2, and obtained by “unfolding” «. Thus, when some variable occur-
rence can be both free and bound, renaming quantified variables while preserving
equivalence can be a computationally demanding task (the unfolding process may
easily lead to an exponential blow-up of the input representation). Actually, when
C D {A,V}, the possibility of having some variable occurrences both free and
bound (or to depend on different existential quantifications) in C'~QDAG repre-
sentations not containing universal quantifications is enough to simulate universal
quantifications in them (see [27]). As a consequence, the corresponding class of
DAG:s is strictly more succinct than the corresponding language of formulae. On
the other hand, some problems are computationally easier when formulae (and not
DAGs) are considered; for instance, when universal quantifications are disabled,
the model checking problem for C-QDAG formulae with C' O {A, V} is "only”
NP-complete, while it is PSPACE-complete when the full class of C-QDAG rep-
resentations without universal quantifications is considered.

Conventionally, the representation «y rooted at a decision node N = (z, N, N_)
over x € PS in the standard representation of an ordered binary decision di-
agram (i.e., an OBDD. representation) is such that ay = ite(x,an,,ay ) =
(@ ANan,) V (mx Aan_). ay, (resp. ay_), the representation associated with
node N, (resp. N_), is the conditioning of a by x (resp. —x), i.e., the representa-
tion obtained by replacing every occurrence of x in ay by T (resp. _L).

Finally, we consider the following notations. If « € C'-QDAG and X =
{z1,...,2,} C PS, then 3X.« is a short for

1. (Fzo.(... 32,.0)...)

and VX .« is a short for
V. (Vao. (.. Vo, .a)...)

(these notations are well-founded since whatever the chosen ordering on X, the
resulting representations are logically equivalent).

2.3. KROM, HORN, AFF, K/H, and renH

In the following, we will focus on several well-known propositional languages,
namely the Krom CNF language KROM (also known as the bijunctive fragment)
[23], the Horn CNF language HORN [24], and the affine language AFF (also
known as the biconditional fragment) [25], as well as K/H (Krom or Horn CNF
formulae) and renH, the language of renamable Horn CNF formulae [26].

The languages KROM, HORN, AFF, K/H, and renH are formally defined as
follows:



Definition 3 (KROM, HORN, AFF, K/H, and renH).

o The language KROM is the subset of all CNF formulae in which each clause
is binary, i.e., it contains at most two literals.

o The language HORN is the subset of all CNF formulae in which each clause
is Horn, i.e., it contains at most one positive literal.

o The language K/ H is the union of KROM and HORN.

o The language renH is the subset of all CNF formulae o for which there
exists a subset V of Var(«) (called a Horn renaming for «) such that the
formula noted V («) obtained by substituting in « every literal | of Ly by
its complementary literal | is a HORN formula.

e The language AFF is the subset of C-DAG with C' = {N\,—, @}, consist-
ing of conjunctions of XOR-clauses where a XOR-clause is a finite XOR-
disjunction of literals (the XOR connective is denoted by ®).

Here are some examples of formulae from KROM, HORN, renH, and AFF:

e (zVy)A(—yV z)is a KROM formula.
o (mxV-yVz)A(—yV z)isaHORN formula.

o (xVyVz)A(—xV-yVz)isarenH formula.
V' = {x, 2} is a Horn renaming for it.

o (@ ydT)A(-xdyd z)is an AFF formula.

Clearly enough, determining whether a given C'-QDAG representation « (for
any fixed ') is a KROM (resp. HORN, K/H, AFF) formula can be easily achieved in
time polynomial in the size of . Note also that there exists linear time algorithms
for recognizing renH formulae (see e.g. [28, 29]); furthermore, such recognition
algorithms typically give a Horn renaming when it exists.

KROM, HORN, AFF, K/H, and renH are known as polynomial classes for the
SAT problem (i.e., the restriction of SAT to any of them is in polynomial time
— stated otherwise, each of them satisfies CO). However, none of them is fully
expressive w.r.t. propositional logic (there exist propositional formulae, like (z V
yV z) A\ (—xV-yV-z), which cannot be represented in any of them); this severely
restricts their attractiveness for the KC purpose.

Interestingly, KROM, HORN, and AFF have semantical characterizations in terms
of closures of sets of models:
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e A set S of interpretations over a finite V' C PS is the set of models of
a KROM formula « such that Var(«) = V if and only if it is closed for
majority [30, 25], i.e., Yw;, ws,ws € S, the interpretation maj(wy, we, ws)
over V belongs to S as well. Here maj(w;, ws,ws) is defined by Va € V,
maj(wy,wq, ws)(x) = 1if at least two interpretations among w+ , wo, w3 give
the truth value 1 to x.

e A set S of interpretations over a finite V' C PS is the set of models of
a HORN formula « such that Var(«a) = V if and only if it is closed for
the bitwise AND connective [31, 32], i.e., Vw;,ws € S, the interpretation
and(wy,ws) over V belongs to S. Here and(w;,ws) is defined by Vax € V,
and(wy,wy)(x) = 1ifwy(x) = we(z) = 1.

e A set S of interpretations over a finite V' C PS is the set of models of
an AFF formula « such that Var(a) = V if and only if S is closed for
the ternary @ connective [30, 25], i.e., Vw;,ws, w3 € S, the interpretation
@ (w1, ws,ws) over V belongs to S. Here & (w1, ws,ws) is defined by Vz €
V, ®(wy, w2, ws) () = wi(x) B wa(x) B ws(x).

These characterization results can be exploited to show that some proposi-
tional formulae cannot be expressed as KROM (resp. HORN, AFF) formulae.

3. Queries, Transformations, Expressiveness and Succinctness

Let us now briefly recall the sets of queries and transformations used for com-
paring propositional languages in [1], as well as the notions of expressiveness and
succinctness; their importance is discussed in depth in [1], so we refrain from
recalling it here.

3.1. Queries

The basic queries considered in [1] and subsequent papers concern DAG—NNF
representations; they include tests for consistency (CO), validity (VA), clausal
entailment (CE), implicants (IM), equivalence (EQ), sentential entailment (SE),
counting (CT) and enumerating theory models (ME). We extend them to C-QDAG
representations and add to them MC, the model checking query, which is trivially
offered by unquantified representations, but not by quantified representations in
the general case.

Definition 4 (queries). Letr L denote any subset of C-QDAG.

11



o L satisfies CO, the consistency query (resp. VA, the validity query) if there
exists a polynomial-time algorithm that maps every representation o from
L to 1 if a is consistent (resp. valid), and to 0 otherwise.

o L satisfies CE, the clausal entailment query, if there exists a polynomial-
time algorithm that maps every pair {(«,d), where « is a representation
from L and § is a clause, to 1 if a |= § holds, and to 0 otherwise.

o L satisfies EQ, the equivalence query (resp. SE, the sentential entailment
query) if there exists a polynomial-time algorithm that maps every pair
(o, B) of representations from L to 1 if « = B (resp. o |= [3) holds, and to
0 otherwise.

o L satisfies IM, the implicant query, if there exists a polynomial-time algo-
rithm that maps every pair {c,7y), where « is a representation from L and
v is aterm, to 1 if v = « holds, and to 0 otherwise.

o [ satisfies CT, the model counting query, if there exists a polynomial-time
algorithm that maps every representation o from L to a nonnegative integer
that represents the number of models of o over Var(«) (in binary notation,).

o [ satisfies ME, the model enumeration query, if there exists a polynomial
p(., ). and an algorithm that outputs all models of an arbitrary representa-
tion « from L in time p(n, m), where n is the size of o and m is the number
of its models over Var(a).

o L satisfies MC, the model checking query, if there exists a polynomial-time
algorithm that maps every pair (o, w), where « is a representation from L
and w is an interpretation over Var(«), to 1 if I is a model of a, and to 0
otherwise.

3.2. Transformations

The basic transformations considered in [1] are conditioning (CD), (possibly
bounded) closures under the connectives® A, V, and = (A C, ABC, VC, VBC,
—C) and (possibly bounded) forgetting which can be viewed as a closure operation
under existential quantification (FO, SFO). Forgetting is an important transforma-
tion as it allows us to focus/project a representation on a set of variables, which

3Closures under other connectives could also be easily defined but seem to be less significant.
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proves helpful in many applications, including model-based diagnosis [33], rea-
soning about actions [34], and reasoning under inconsistency [35, 36]. All those
transformations concern DAG—NNF representations. We extend them to C'-QDAG
representations and enrich the list with two additional transformations, which are
dual to (FO, SFO), namely “ensuring” (EN) and the bounded restriction of it
(SEN). Ensuring amounts to eliminating universal quantifications and allows us
to project a representation on a set of variables in a robust way, i.e., independently
of the values of the removed variables. This transformation is central in decision
making under uncertainty and non-deterministic planning, see e.g. [37].

Definition 5 (transformations). Let L denote any subset of C—QDAG.

o L satisfies CD, the conditioning transformation, if there exists a polynomial-
time algorithm that maps every pair (o, 7y), where o is a representation from
L and vy is a consistent term, to a representation from L that is logically
equivalent to 3Var(y).(a A 7).

o L satisfies FO, the forgetting transformation, if there exists a polynomial-
time algorithm that maps every pair (o, X'), where « is a representation
from L and X is a set of variables from PS, to a representation from L
equivalent to 3X.a. If the property holds for each singleton X, we say that
L satisfies SF'O (singleton forgetting).

e [ satisfies EN, the ensuring transformation, if there exists a polynomial-
time algorithm that maps every pair (o, X), where « is a representation
from L and X is a set of variables from PS, to a representation from L
equivalent to VX.a. If the property holds for each singleton X, we say that
L satisfies SEN (singleton ensuring).

o L satisfies NC, the closure under conjunction transformation (resp. \VC, the
closure under disjunction transformation) if there exists a polynomial-time
algorithm that maps every finite set of representations oy, . . . , v, from L to
a representation of L that is equivalent to ccy A . .. Ny, (resp. ay V...V ap).

o L satisfies ABC, the bounded closure under conjunction transformation
(resp. VBC, the bounded closure under disjunction transformation), if there
exists a polynomial-time algorithm that maps every pair of representations
a and B from L to a representation of L that is equivalent to o \ [3 (resp.

aV ).
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o L satisfies —=C, the closure under negation transformation, if there exists a
polynomial-time algorithm that maps every representation o from L to a
representation of L which is equivalent to —.

When « is a C'-DAG representation (i.e., a non-quantified representation), the
conditioning of « by 7 can be defined in an equivalent, yet simpler way, as the
representation o, obtained by replacing in « every occurrence of variable z by T
(resp. L) when x (resp. —x) is a literal of 7. Such a characterization cannot be
extended to C'-QDAG representations in the general case. Especially, considering
only those variables = occurring free in « as candidates for the replacement is not
enough. Indeed, since DAG-based representations are considered, it can be the
case that in « one can find a leaf node N labeled by z such that one path from the
root of « to this leaf node does not contain any node labeled by a quantification
on x, while other paths from the root to NV contain such quantifications (see [27]).

3.3. Expressiveness, Succinctness, and Polynomial Translations

We consider three notions of translations on classes of propositional represen-
tations (here, subsets of C'-~QDAG), starting from the less demanding one, namely
expressiveness:

Definition 6 (expressiveness). Let L, and Ly be two subsets of C-QDAG. L is
at least as expressive as Lo, denoted L1 <. Lo, if for every representation o € L,
there exists an equivalent representation 3 € L.

A first refinement of such a notion of translatability consists in considering
only polynomial-space translations, i.e., the size of the translated representation
must remain polynomial in the size of the input representation:

Definition 7 (succinctness). Let L, and Ly be two subsets of C—QDAG. L is at
least as succinct as Lo, denoted L1 <, Lo, if there exists a polynomial p such that

for every representation a € Lo, there exists an equivalent representation 5 € L,
where |B| < p(|a]).

Finally, we consider still more demanding translations, namely polynomial-
time translations:

Definition 8 (polynomial translation). Ler L, and L4 be two subsets of C—QDAG.
Ly is said to be polynomially translatable into L4, noted L, <,, Lo, if there exists
a (deterministic) polynomial-time algorithm f such that for every a € Lo, we
have f(a) € Ly and f(a) = . We also say that « is polynomially translatable

into f(a).
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Clearly enough, <., <,, and <, are pre-orders (i.c., reflexive and transitive

relations) over the subsets of C'-QDAG. Furthermore, we have the inclusions:
Sp - Ss C Se

For each relation <, among <., <, and <,,, the relation ~, denotes the sym-
metric part of <,, defined by £, ~, Lo if £L; <, L5 and L5 <, L;. By construc-
tion, each ~, is an equivalence relation (i.e., a reflexive, symmetric and transitive
relation). On the other hand,the relation <, denotes the asymmetric part of <,,
defined by £y <, Ly if £ <, Lo and Ly £, L4. By construction, each <, is a
strict order (i.e., an irreflexive and transitive relation).

In the following, £, £} L, means that £; £, L, unless the polynomial hier-
archy PH collapses (which is considered very unlikely in complexity theory).

When £; <. L5 holds, every representation from L, can be translated into
an equivalent representation from £;. The minimal elements w.r.t. <. (i.e., the
most expressive elements) of the set of all subsets of C~QDAG when C' is any
functionally complete set of connectives (especially, as soon as C' contains V and
A since leaf nodes of C'-~QDAG representations are labeled by literals) are called
complete propositional classes: they can provide a representation (up to logical
equivalence) of any Boolean function.

When L ~ Ly (resp. Ly ~g Lo, L1 ~, L), L1 and L, are said to be equally
expressive (resp. equally succinct, polynomially equivalent).

Whenever £; is polynomially translatable into £, every query which can be
answered in polynomial time in £, can also be answered in polynomial time in
L4; and conversely, every query which cannot be answered in polynomial time in
L4 unless P = NP cannot be answered in polynomial time in Lo, unless P = NP.
Furthermore, polynomially equivalent classes are equally efficient in the sense
that they possess the same set of tractable queries and transformations.

4. On Closures of Propositional Representations

Intuitively, a closure principle applied to a class £ of propositional representa-
tions defines a new class, called a closure of £, through the (implicit) application
of “operators” (i.e., connectives from C' or quantifications) to the representations
from L. Formally:
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Definition 9 (closure). Ler L C C-QDAG and A\ C C'U{V, 3}. The closure L[A]
of L by A\ is the subset of C—QDAG inductively defined as follows:*

1. ifa € L, then a € L]\,

2. ifc € A is an n-ary connective and vy, . . . , «, are elements of L[] such
that Vi, j € {1,...,n}, ifi # j then o; and o; do not share any common
(nonempty) subgraphs, then c(ay, . .., a,) € LA,

3. ifc € A is a quantifier, x € PS, and o € L[A], then cx.cv € L]A].

Each element of £][A] can be viewed as a “tree” which “internal nodes” are la-
beled by connectives from C' or quantifications and its “leaf nodes” correspond to
“independent” representations from L. Accordingly, the representations «; con-
sidered in item 2. of Definition 9 do not share any common subgraphs.

Clearly, if there exists a polynomial-time algorithm for determining whether
a given representation « € C'-QDAG belongs or not to £, then there also exists
a polynomial-time algorithm for determining whether a given representation o €
C'-QDAG belongs or not to the closure L[A] of £ by A.

We have derived the following (easy) proposition, which rules the inclusions
between closures depending on the way their sets of connectives are related by set
inclusion:

Proposition 1. For every subset L, L' of C—QDAG and every subset /\1, /Ny of
C U {3,V}, we have:

0. £ C LA and if £ C L, then L[] C L[]
1. (L[A])[ 2] C LIAT U Ay,

2. (L[A])[A] = LA

3. If Oy C Dy then L[A] C L] D).

4. If Dy C Ay then (L[A0])[Do] = L]As] and (L[A))[A1] = L[]

“In order to alleviate the notations, when A = {41, ..., 6, }, we write L[d1, ..., ,] instead of
LI{01,...,0,}]
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Some additional properties stating how some closures of a class £ can be
composed, can be derived when bound variables can be “freely” renamed in the
L representations. The property of stability by uniform renaming, given at Defi-
nition 10, characterizes the subsets of C'-QDAG for which, intuitively, the choice
of variable names in the £ representations does not really matter:

Definition 10 (stability by uniform renaming). Let L be any subset of C-QDAG.
L is stable by uniform renaming if for every o € L, for every non-empty subset
V' of variables occurring in «, there exist arbitrarily many distinct bijections r;
(i € N) from V' to subsets V; of fresh variables from PS (i.e., for each i,j € N
with i # j, we have V; N'V; = V; NV = 0) such that the representation r;(c)
obtained by replacing in « (in a uniform way) every occurrence of x € V (either
quantified or non-quantified) by r;(x) belongs to L as well.

This condition is not very demanding: all the ’standard” classes of proposi-
tional representations (quantified or not) are stable by uniform renaming (when
based on a countably infinite set P.S as this is the case here). Special attention
must nevertheless be paid to the OBDD. language, and more generally to every
class based on an ordered set of propositional variables. For the OBDD. case
where < is a strict and complete ordering over PS we may assume the ordered
set (PSS, <) to be of order type 7 (1 is the order type of the set of rational num-
bers equipped with its usual ordering [38]). This restriction is harmless since the
set of variables occurring in any OBDD. representation is finite. In a nutshell,
whatever the way the variables occurring in a given OBDD. representation « are
ordered w.r.t. <, one must be able to "insert” in this ordering arbitrarily many
fresh variables between two variables of o while preserving the way other vari-
ables are ordered. Order type 1 clearly allows it (between two distinct rational
numbers one can find countably many rationals). To make things clearer, let us
give a counter-example: let PS= {z; | i € N} ordered in such a way that for
every ¢ € N, x; < x;,1. Consider an OBDD_ representation of xy V x; as given in
Figure 3. < is not of type . Take V' = {x¢}: x¢ cannot be renamed into a differ-
ent variable from PS without questioning the ordering requirement over OBDD .,
which shows that OBDD. is not stable by uniform renaming in this case.

Straightforwardly, the closure by any set of connectives/quantifiers of any
class of propositional representations, which is stable by uniform renaming, also
is stable by uniform renaming.

We are now ready to present more specific results. The following polyno-
mial (dual) equivalences, showing that existential quantifications (resp. universal
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1 T

Figure 3: An OBDD. representation of zg V .

quantifications) when viewed as “operators” “distribute” over disjunctions (resp.
conjunctions), are well-known:

dr.(y V... Va,) = (Fr.oq) V...V (Tz.ap),

(Vr.ar) Ao A (Vo.ay).

Ve.(ar Ao A ay)

It can then be shown that:

Proposition 2. Let L be any subset of C-QDAG s.t. L is stable by uniform re-
naming. We have:

o (LEDMV ~p (LIVDE] ~p £]V, 3.
o (LIVDIA] ~p (LIADIV] ~p L[N, V.

Figure 4 illustrates the polynomial equivalences between disjunctive closures
given at Proposition 2.

Proposition 1 and Proposition 2 show together that when A = {V, 3} (resp.
{A,¥}) closing L[A] by subsets of A in an iterative fashion does not lead to a
“new” class, i.e., a class which is not polynomially equivalent to £. Especially,
we have

(LIV, 3B ~p (LI, 3DIV]E ~p LIV, 3]

This shows, so to say, that the “sequential” closure of a propositional class, stable
by uniform renaming, by a set of operators among {\/, 3} (resp. among {A, V}) is
polynomially equivalent to its “parallel” closure. No similar result can be system-
atically guaranteed for arbitrary choices of classes and operators. For instance, if
L is the set of literals over PS, then the “sequential” closure (L[V])[A] is the set
of all CNF formulae, the ”sequential” closure (£[A])[V] is the set of all DNF for-
mulae, and the “parallel” closure L[V, Al is the set of all NNF representations. It is
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JXuYuZz

61X, Y, Z,T] Bo| XY, Z,T]
Qzy = E|X1UY1UX2UY§UZQ ayz =V
Vv JX;uvn IXoUYo U Zy

51[X17Y'17Z7T] ﬁ2[X27}/27Z27T] 61[X1,}/1,Z,T] 52[X27Yé7Z27T]

Figure 4: Polynomial equivalences between disjunctive closures. The representation « at the top of
the picture belongs to L[V, 3]. 51[X,Y, Z,T| and 82[X, Y, Z, T| denote propositional representa-
tions (not necessarily tree-structured ones) from £ such that Var(5;) = Var(f2) = XUYUZUT,
where X, Y, Z, and T are pairwise disjoint, finite subsets of PS. The representation gy at the
bottom, left-hand side of the picture is a (L£[V])[3] representation into which « can be polynomi-
ally translated. The representation a3 at the bottom, right-hand side of the picture is a (£[3])[V]
representation into which a can be polynomially translated.
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well-known that those three languages are not pairwise polynomially equivalent
(indeed, we have CNF «, DNF, DNF £, CNF, NNF <, CNF, and NNF <, DNF,
see e.g. [39]). Similarly, if £ = CLAUSE, then (£[A])[3] and L[A, 3] are poly-
nomially equivalent to CNF[3], but (L£[3])[A] is polynomially equivalent to CNF,
which is not polynomially equivalent to CNF[J]. Indeed, whatever C', C~DAG
is polynomially translatable into CNF[J] using Tseitin’s extension principle [40],
while CNF is not at least as succinct as C-DAG as soon as C' O {A, V, =} (indeed,
CNF is not at least as succinct as the subset DNF of NNF, which is itself a subset
of C'-DAG in this case).

We have derived the following proposition, which relates the queries and the
transformations offered by £, with the queries and transformations offered by
its disjunctive closures £[V] (the disjunction closure of £), £[d] (the existential
closure of £), and L[V, 3] (the full disjunctive closure of £).

Proposition 3. Let L be any subset of C—QDAG s.t. L is stable by uniform re-
naming.

o [f L satisfies CO (resp. CD),
then L[V], L£[3] and L]V, 3] satisfy CO (resp. CD).

o [f L satisfies CO and CD, then L satisfies CE and ME.
e If L satisfies CO and CD, then L, L|V], L£[3] and L]V, 3] satisfy MC.

o L[V] and L]V, d] satisfy VC (hence VBC)
and L[3] and L[V, T] satisfy FO (hence SFO).

e [f L satisfies FO (resp. SFO), then L|V] satisfies FO (resp. SFO).

o [f L satisfies NC (resp. ABC, VC, VBC),
then L[] satisfies NC (resp. ABC, VC, VBC).

Note that applying disjunctive closures do not preserve other queries or trans-
formations in the general case. Thus:

o if L satisfies VA (resp. IM, CT, EQ, and SE), then it can be the case that
L[V] does not satisfy it. For instance, TERM satisfies each of VA, IM, CT,
EQ, and SE, but TERM|V] = DNF does not satisfy any of them unless P =
NP [1].
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o if L satisfies VA (resp. IM, CT, EQ, and SE), then it can be the case
that £[d] does not satisfy it. Thus, £ = CNF satisfies VA and IM but
CNF[d] does not satisfy any of them unless P = NP; indeed, DNF (which
does not offer any of them) is polynomially translatable into CNF[3] using
Tseitin’s transformation [40]. Similarly, £ = HORN satisfies both EQ and
SE, but HORN[J] does not offer any of them (see Proposition 5). Finally,
the subset £ = d-DNF of DNF consisting of deterministic DNF formulae
(i.e., the DNF formulae v = \/_, 7; such that for each i,j € 1,...,n, if
¢ # j, then the terms ~; and +y; are such that ; A +; is inconsistent) satis-
fies CT, but d-DNF[J] does not. Indeed, DNF is polynomially translatable
into d-DNF[J]: with each DNF formula o = \/?:1 7; We can associate in
polynomial time the equivalent d-DNF[J] formula 3{y1, ...,y }. Vi (%A
/\;;11 —y; A i), where {y1, ...,y } is a set of fresh variables (disjoint from
Var(«)).

e if L satisfies AC, then it can be the case that £]V] does not satisfy it. Thus,
L = TERM satisfies AC, but TERM[V] = DNF does not, unless P = NP [1].

e if L satisfies —=C, then it can be the case that none of £[V] and £[3] satisfies
it. Thus, £ = OBDD. satisfies =C, but none of OBDD_[V| and OBDD_ ]
satisfies =C unless P = NP. As to OBDD.[V], this comes from the fact that
TERM >, OBDD., which implies that DNF >, OBDD[V|. Since every CNF
formula « is polynomially translatable into the negation of a DNF formula 3,
if OBDD[V] would satisfy —C, then the consistency of « could be tested in
polynomial time by computing first an OBDD_ [V] representation equivalent
to (3, then “negating” it to reach an OBDD_ [V| representation equivalent to
«. Indeed, since OBDD. satisfies CO, OBDD.[V] also satisfies CO (see
Proposition 3). As to OBDD_[d], we can make a rather similar proof given
that OBDD . [d] also satisfies CO (see again Proposition 3). To get the proof,
it is enough to show that OBDD.[V] >, OBDD_[d]: let &« = \/I_, a; be an
OBDD_[V] representation; let yy, . . ., y,, be variables from PS\ Var(a) such
that each y; (i € 1,...,n) precedes every variable from Var(«). From a,
we can generate in polynomial time the OBDD. representation

ﬁ = <y17061, <y2,042, Cey <yn7an> J_, > .. >>

To conclude the proof it is enough to observe that « is equivalent to the
OBDD_[d] representation 3{y1, ..., y,}.5.
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o if £ satisfies EN, then it can be the case that £[V] does not satisfy it. Thus,
L = TERM satisfies EN, but TERM|V| = DNF does not, unless P = NP, since
a DNF formula « is valid iff its universal closure V Var(«).«v is valid iff
V Var ().« is consistent (since V Var(«).« has no free variable, it is equiva-
lentto T or to L, hence it is consistent precisely when it is valid), and DNF

satisfies CO.

e if L satisfies EN, then it can be the case that £[3] does not satisfy it. Thus,
L = CNF satisfies EN, but CNF[J] does not, unless PH collapses. This
comes easily from the fact that the validity problem for CNF[d] formulae
of the form 31X .« is TT5-complete. Indeed, 3X .« is valid iff the (closed)
quantified Boolean formula V Var(«) \ X.(3X.«) is valid.

5. On the Disjunctive Closures of KROM, HORN, AFF, K/H, and renH

Let us now focus on the disjunctive closures of KROM, HORN, AFF, K/H, and
renH.

First of all, it is obvious that the four languages KROM, HORN, K/H, and
AFF are stable by uniform renaming. This is also the case for renH: if V is
a Horn renaming for a renH formula «, and if oy is the CNF formula ob-
tained by substituting in a uniform way in « every occurrence of a variable v
from X C PS by the fresh variable v/, then o’y also is a renH formula and
Vi={ve Var(d) |ve V\X}Uu{v € Var(¢/) | v € VN X} is a Horn
renaming for it.

Now, thanks to Propositions 1 and 2, it is enough to consider the three disjunc-
tive closures £[3], £[V], and L]V, 3] with £ being any on the five above languages.
Clearly enough, the disjunction (resp. existential, full disjunctive) closure of any
language among KROM, HORN, K/H, renH, and AFF is also stable by uniform
renaming.

Applying the disjunctive closure principles [V], [d], and [V, J] to the five lan-
guages KROM, HORN, K/H, renH, and AFF leads to consider fifteen additional
languages. The following easy result shows that some of the resulting languages
do not need to be considered separately, because they are polynomially equivalent.

Proposition 4.
e KROM ~,, KROM[d].

e KROM|[V] ~,, KROM[V, d.
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e AFF ~, AFF[d].

e AFF[V] ~, AFF[V, d].

As a direct consequence, we have that KROM and KROM|[J] (resp. AFF and
AFF[d|, KROM[V] and KROM[V, d], AFF[V] and AFF[V,d]) are both (pairwise)
equally succinct and equally expressive.

Accordingly, we focus in the following on the sixteen languages: KROM,
HORN, K/H, renH, AFF, HORN[3|, K/H[3], renH[3], KROM[V], HORN[V], K/H[V],
renH[V], AFF[V], HORN[V, 3], K/H]V, 3], and renH|[V, d].

From Proposition 1, we get that:

KROM C KROM[V] C KROM[V, 7|
HORN C HORN[J] C HORN|[V, 7|
HORN C HORN[V] C HORN|V, 7]
K/H C K/H[3] CK/H]V,]]
K/H C K/H[V] CK/H[V, T
renH C renH[d] C renH|[V, ]
renH C renH[V] C renH|V, ]
AFF C AFF|V]

Obviously enough, from the definitions of the languages KROM, HORN, K/H,
and renH, we also have the following inclusions:

KROM C K/H
HORN C K/H
HORN C renH

From such results, we immediately derive that:

KROM[V] C K/H[V]
HORN[V] C K/H][V]
HORN[V] C renH]V]
HORN[3] C K/H[T]
HORN([d] C renH[]]
HORN[V, 3] C K/H|[V,d]
HORN|[V, 3] C renH[V, 7|
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In addition, since every consistent KROM formula is a renH formula® and since
KROM satisfies CO, with every K/H formula we can associate in polynomial time
an equivalent renH formula, i.e., K/H >, renH. As a consequence, we also get
that

K/H[V] >, renH]|V]
K/H[3] >, renH[d]
K/H[V,3] >, renH|[V, J]

Finally, since for every subset £ of C-QDAG, £ C L[V]| C L]V, d], C is in-
cluded into >, and both C and >, are transitive relations, a number of additional
inclusions/polynomial translatability results can be directly obtained from the re-
sults above; they will be exploited in some forthcoming proofs.

5.1. Queries and Transformations

As to queries, we have obtained the following results:
Proposition 5. The results in Table 1 hold.
As to transformations, we have obtained the following results:

Proposition 6. The results in Table 2 hold.

5.2. Expressiveness

It is well-known that none of the languages KROM, HORN, K/H, renH, or AFF
is complete for propositional logic. For instance, there is no formula from any of
these languages which is equivalent to the CNF formula (zVyVz)A(—zV-yV-z).
This is problematic for many applications; indeed, what can be done when the
available information cannot be represented in the targeted language? Approxi-
mating it is not always an option, especially because the best approximation of the
available information can be rough and the missing pieces of information in the
approximation can be crucial ones for reasoning and/or decision making. In the
following, we are going to prove that while considering the existential closure of

SThis is a direct consequence of the fact that a CNF formula « is renamable Horn precisely
when there exists an interpretation w such that at most one literal per clause of « is false in w [26];
indeed, when « is a KROM formula, this last statement exactly means that « is consistent.
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renH[V,d] | / o vV o o vV v/
K/H[V,d] vV o vV o o o o v v/
HORN[\/,E] \/ o \/ o o o o \/ \/

AFF[V] Vi o | V] ololo|lo| V]IV
renH[V] Vi o Vi o o ) ) Vv v
KAV |V [ o [V [o o oo V]V
HORN[V] Vo | V| o o o o NV
KROM[V] vV o N o o o o v Vv
renfil] | V [V [V [ V] o olo [V ][V
K/HE |V [V V|V ][o]olo | V]V
HORN[J] ViV VIV oo o o N
BE |V [ VIVIVIVIVIVI]I V]V
renH VIVIVIVIVIV]Io VIV
K/H VIVIVIVIVIV]Ie VIV
HORN VIVIVIVIVIV]Io VIV
KRoM | V [V VI VIVIV]e [ V]V

Table 1: KROM, HORN, K/H, AFF, renH, their disjunction, existential and full disjunctive closures
and the corresponding polynomial-time queries. 4/ means “satisfies” and o means “does not satisfy

unless P = NP.”

any of those languages does not increase its expressiveness, switching to its dis-
junction closure (or to its full disjunctive closure) is enough to recover a complete
propositional language, thus escaping from the above mentioned expressiveness
problem.

Let us start with the existential closures of KROM, HORN, K/H, renH, and
AFF. First, since KROM (resp. AFF) is polynomially equivalent to KROM[] (resp.
AFF[d)), it turns out that those languages are (pairwise) equally expressive: KROM[J|
~ KROM, and AFF[d] ~, AFF. Similarly, we have derived the following expres-
siveness results, showing that the existential closure of any language £ among
HORN, K/H, and renH is not more expressive than L itself.

Proposition 7.

e HORN[d] ~, HORN.
e K/H[J| ~. K/H.

e renH[d] ~, renH.
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Table 2: KROM, HORN, K/H, AFF, renH, their disjunction, existential and full disjunctive closures
and the corresponding polynomial-time transformations. 4/ means “satisfies,” ¢ means “does not
satisfy,” while o means “does not satisfy unless P=NP.” | means that the transformation is not
always feasible within the language.

Now, from the definitions of KROM, HORN, K/H, renH, the fact that K/H >,
renH, and the fact that = V y is a KROM formula, which is not equivalent to a
HORN one, -z V =y V —z is a HORN formula which is not equivalent to a KROM
one, x Vy V zis a renH formula which is not equivalent to a K/H one, we easily
get that:

KROM £, HORN and HORN £, KROM
renH <, K/H<. HORN
K/H <., KROM

In addition, AFF and any of KROM, HORN, K/H, renH are incomparable w.r.t.
<.. Indeed, there is no renH formula equivalent to the AFF formula x & y & z.
This comes from the fact that every CNF formula equivalent to x & y & 2 must
contain the four clauses x Vy V z, 7z V -y V z,z V -y V =z, nx V y V =z since
those clauses are essential prime implicates of © & y @ z, plus the fact that by
construction, every CNF formula containing the clauses z V y V 2z, ~z V —y V 2,
xV -y V -z, nzVyV -z is not renamable Horn (renaming at least two variables
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in the first clause to make it a Horn clause also changes one of the remaining three
clauses into a non-Horn one). Conversely, there is no AFF formula equivalent
to —x V —y, which is both in KROM and in HORN. This is a direct consequence
of the semantical characterization result concerning AFF recalled in Section 2.3:
with x < y, w; = 00, wy = 01, and w3 = 10 are models of -~z V —y, but
® (w1, we,ws) = 11 is not a model of —z V —y.

Let us finally switch to the disjunction closures and the full disjunctive clo-
sures of KROM, HORN, K/H, renH, or AFF; interestingly, the eight languages
defined as such are equally, and fully, expressive:

Proposition 8. KROM[V], HORN[V], K/H[V], renH|[V], AFF[V], HORN[V, 3], K/H[V, T],
renH|V, 3| are complete propositional languages.

Figure 5 depicts the expressiveness relationships identified in the above propo-
sitions.

KROM[V] ~ HORN[V] ~, K/H[V] ~.renH[V]
~¢ HORN[V, 3] ~, K/H[V, 3] ~, renH[V, 7|

PN

renH ~, renH[d] AFF ~, AFF[d]

{

K/H ~. K/H[J]

SN

KROM ~, KROM[] HORN ~, HORN[J]

Figure 5: The expressiveness picture for disjunctive closures. An arrow from £ to L2 means that
L is strictly more expressive than L5, so that a lack of arrow means that the expressiveness of £
and the expressiveness of Lo are incomparable).

5.3. Succinctness

As to incomplete languages, since KROM (resp. AFF) is polynomially equiv-
alent to KROM[3] (resp. AFF[d]), those languages are (pairwise) equally succinct:
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KROM[d| ~s KROM, and AFF[d| ~, AFF. More interestingly, we have obtained
the following succinctness results, showing that the existential closure of any lan-
guage £ among HORN, K/H, and renH is strictly more succinct than L itself.

Proposition 9.

e HORN[J| <, HORN.

e K/H[F] <sK/H

e renH[d| < renH.

e renH and K/H[3| are incomparable w.rt. <.

e K/H and HORNI[] are incomparable w.r.t. <.

Figure 6 summarizes the succinctness relationships among incomplete lan-
guages identified in Proposition 9. We observe that it does not coincide with
the corresponding expressiveness picture, restricted to incomplete languages (see
Figure 5).

renH[d| AFF ~g AFF[d]

N

K

]

SN

/H HORN[J]
/

N

KROM ~ KROM[J] HORN

S~

ren H

DN

Figure 6: The succinctness picture for incomplete languages. An arrow from £; to Lo means
that £, is strictly more succinct than Lo, i.e., £1 <s L£5. The arrow is thick in the specific case
when the fact that Lo L4 £ comes from the fact that Lo €. £1. A lack of arrow means that the
succinctness of £; and the succinctness of L5 are incomparable.
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As to complete languages, our succinctness results mainly focus on the five
languages KROM[V|, HORN[V, d], K/H[V, 3|, renH[V, d], AFF[V], the full dis-
junctive closures of the incomplete languages KROM, HORN, K/H, renH, AFF
considered at start.®

There are several reasons for this focus:

e KROM|V|, HORN|V, d], K/H[V, d], renH[V,d], AFF[V] are complete lan-
guages, while KROM, HORN, K/H, renH, AFF and their existential closures
are not (see Proposition 7 and Proposition 8 above).

e HORN[V,d], K/H[V, 3|, renH[V, 7] satisfy the same queries as the corre-
sponding disjunction closures, namely HORN[V], K/H[V|, renH[V] (see
Proposition 5), and more transformations than them (see Proposition 6),
since they offer FO for free”.

e due to the obvious inclusion HORN[V]| C HORN|[V, 3], we have that HORN[V, 3]
is at least as succinct as HORN|V|[; and similarly for K/H[V, J] and renH|V, 3.

Actually, we can strengthen this point by proving that the full disjunctive clo-
sure of HORN (resp. K/H, renH) is strictly more succinct than the corresponding
disjunction closure:

Proposition 10.
e HORN[V, J] <, HORN[V].
e K/H[V,d] < K/H[V].

e renH[V,d] <, renH|[V].

Thus, the full disjunctive closures of the incomplete languages KROM, HORN,
K/H, renH, AFF are either equally succinct as the corresponding disjunction clo-
sures (this is the case for the closures of KROM and of AFF), or strictly more
succinct than them (for the three remaining languages).

Let us now provide the remaining succinctness results we got. We split our
results into two propositions (and two tables). In the first table, we compare
KROM|V|, HORN|V, J], K/H[V,d], renH|[V,d|, AFF[V] w.r.t. spatial efficiency
<

—S8-

Proposition 11. The results in Table 3 hold.
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] | AFF[V] [ renH[V,3] | K/H[V,T] | HORN[V,T] | KROM[V] |

AFF[V] ~s gs gs ﬁs ﬁs
renH[V, ] s ~s <s <s <s
K/H[\/,ﬂ] ﬁs gs ~s <s <s
HORN[V, J] £ £ £s ~s £s
KROM[V} ﬁs ﬁs ﬁs ﬁs ~s

Table 3: The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, and
renH.

As a direct consequence of Proposition 11, we have that

renH[V, d] <, K/H[V, d] <, HORN[V, d]
K/H[V, d]<; KROM[V, d]

One can observe that the resulting succinctness picture is similar to the expres-
siveness picture for the corresponding incomplete fragments AFF, renH, K/H,
HORN, KROM.

In Proposition 12, we compare w.r.t. <, the languages KROM[V], HORN[V, J],
K/H[V, d], renH[V, J] and AFF[V] with several classes of propositional repre-
sentations for KC which have been introduced so far, and with CNF. We specifi-
cally focus on those target classes for which compilers have been developed, i.e.,
PI, IP, DNF, OBDD., d-DNNF, and DNNF'.

Proposition 12. The results in Table 4 hold.

Figure 7 depicts the succinctness relationships reported mainly in Proposition
11 and Proposition 12. The closure languages considered in this paper are under-
lined.

5.4. Discussion

Let us now compare in more details the five languages KROM, HORN, K/H,
renH, and AFF, with their closures and with other classes of propositional repre-
sentations considered so far for knowledge compilation.

We start with the existential closures. Since applying the existential closure
principle to any of KROM, HORN, K/H, renH, and AFF does not change its ex-
pressiveness, the existential closures of KROM, HORN, K/H, renH, and AFF are

®Remember that KROM[V, 3] ~,, KROM[V] and that AFF[V, 3] ~,, AFF[V], see Proposition 4.
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d-DNNF DNNF7 renH[V, d] CNF
| S |
OBDD. renH[V] K/H[V,d] PI
/
K/H[V] HORN[V, 3]
~.
KROM]V] HORN[V]  AFE[V]
DNF
TP

Figure 7: The succinctness picture for complete classes. An arrow from £; to £ means that £;
is strictly more succinct than Lo, so that a lack of arrow means that the succinctness of £; and the
succinctness of L4 are incomparable for sure (or, under the assumption that the polynomial hierar-
chy does not collapse when d-DNNF is concerned). For a clarity sake, there are two exceptions to
this notation, which also concern d—DNNF': it is unknown whether d-DNNF <, PI, and whether

d-DNNF <, IP [1].
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\ AFF[V] \ renH[V, 3] \ K/H[V, 3] \ HORN[V, 3] \ KROM[V, J] \

CNF ﬁs, zs gs, zs £8a 25 ﬁs’ zs g& zs
PI ﬁ& zs gS’ 28 ﬁS’ zs $57 zS gS’ zS
DNNFp | Zs, Zs Ls» Ps Ly Ps Ls» Zs ELss Zs

d-DNNF | £%, %5 * Ps P 5 Zs 5 Zs
DNF f& ZS $S7 ZS %Sv ZS $89 ZS XSs ZS
IP %S’ ZS $59 ZS gs, ZS $89 ZS ﬁSa 25

OBDD ﬁg, zs $57 zs ﬁs, Zs ﬁ& 2‘5 ﬁs’ zs

Table 4: Comparing w.r.t. succinctness the full disjunctive closures of KROM, HORN, K/H, renH,
and AFF, with OBDD., IP, DNF, d-DNNF, DNNF, PI, and CNF. x means that the result holds
unless the polynomial hierarchy collapses.

incomplete languages as well. KROM[J] (resp. AFF[d]) is polynomially equiva-
lent to KROM (resp. AFF) since KROM and AFF satisfy FO. As a consequence,
KROM[J] and AFF[d] satisfy the same queries and transformations as their under-
lying language, and KROM[] and AFF[d] are equally succinct as KROM and AFF,
respectively. For the remaining existential closures (namely, HORN[J], K/H[J],
renH[d]), all the transformations already offered by HORN, K/H, renH, are pre-
served and FO is obtained “for free”. However, some queries offered by HORN,
K/H, and renH (EQ, SE) are not preserved. This seems to be the price to be
paid for the gain in succinctness the existential closures offer. Indeed, we have
HORN[d] < HORN, K/H[d] <s; K/H, and renH[d] <, renH. Thus, for applica-
tions where their expressiveness proves enough and EQ and SE are not expected
but FO is, renH[d] (resp. HORN[J]) appears as a better choice than renH (resp.
HORN) as a target language for KC.

Unlike existential closures, the disjunction closures and the full disjunctive
closures of KROM, HORN, K/H, renH, and AFF are complete propositional lan-
guages, i.e., fully expressive ones. Furthermore, switching from any of KROM,
HORN, K/H, renH, or AFF to its disjunction closure or its full disjunctive clo-
sure leads to get VC (hence VBC) “for free” and FO, when it was not already
offered. Conversely, some queries and transformations primarily offered are then
lost; as to queries, this is the case for VA, IM, EQ, SE for the five languages,
plus CT satisfied by AFF but not by any of its disjunction closure or its full dis-
junctive closure; as to transformations, this is the case for EN and AC (and even
SEN, which is satisfied by renH but not satisfied by renH[V] or renH[V, d],
unless P = NP). Just like considering the existential closures of HORN, K/H,
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renH leads to strictly more succinct languages, considering the existential clo-
sures of HORN[V], K/H[V], renH[V] leads as well to strictly more succinct lan-
guages since HORN[V, d] <, HORN[V], K/H[V, J] <s; K/H[V], and renH[V, d]
<s renH[V]. Thus, it turns out that the full disjunctive closures of KROM, HORN,
K/H, renH, and AFF are always at least as interesting as the corresponding dis-
junction closures from a KC perspective: as to KROM and AFF, those closures
are polynomially equivalent, hence equally interesting; as to HORN, K/H, renH,
both closures satisfy the same queries, while each full disjunctive closure offers
FO (not satisfied by the corresponding disjunction closure) and is strictly more
succinct than the underlying language.

Comparing now one another the full disjunctive closures of KROM, HORN,
K/H, renH, AFF it turns out that none of them is strictly dominated by another
one from the KC point of view. All of them are equally expressive, and they satisfy
precisely the same queries CO, CE, ME, MC. As to transformations, KROM[ V],
HORN[V, d], and AFF[V] satisfy CD, FO, SFO, SEN, ABC, VC and VBC. They
are pairwise incomparable w.r.t. succinctness. While K/H[V, d] is strictly more
succinct than each of KROM[V], or HORN[V, ], it does not offer SEN, and while
renH[V, d] is strictly more succinct than K/H[V, 3], it does not offer ABC.

Finally, it is interesting to compare the full disjunctive closures of KROM,
HORN, K/H, renH, AFF, with previous complete classes of representations for
propositional logic, which have been considered as target classes for KC. One
focuses on IP, DNF, PI, OBDD., DNNF, and d—-DNNF':

e TP satisfies all the queries but CT, and no transformation but CD, EN, SEN
and ABC. Hence each of the full disjunctive closures of KROM, HORN,
AFF satisfies less queries than IP but they are incomparable w.r.t. trans-
formations. Furthermore, IP is strictly less succinct than any of the full
disjunctive closures of KROM, HORN, K/H, renH, AFF.

e DNF satisfies the same queries as any of the full disjunctive closures of
KROM, HORN, K/H, renH, AFF, and the same transformations as KROM[V],
HORNJV, d], and AFF[V]. Since it is strictly less succinct than any of the
full disjunctive closures of KROM, HORN, K/H, renH, AFF, it appears as
dominated by KROM[V], HORN[V, d], and AFF[V].

e PT satisfies all the queries but CT, and the transformations CD, FO, SFO,
VBC. Hence, any of the full disjunctive closures of KROM, HORN, K/H,
renH, AFF satisfies more transformations than PI. In addition, PI is in-
comparable w.r.t. succinctness with any of them.
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e OBDD._ satisfies all the queries and the transformations CD, SFO, SEN,
ABC, VBC, and —C. Hence it offers more queries than the full disjunctive
closures of KROM, HORN, K/H, renH, AFF, but it is incomparable with any
of them when transformations are considered. OBDD_ is also incomparable
w.r.t. succinctness with any of the full disjunctive closures of KROM, HORN,
K/H, renH, AFF.

e DNNF'7 satisfies the same queries as any of the full disjunctive closures of
KROM, HORN, K/H, renH, AFF, and the same transformations as KROM[V],
HORN[V, d], and AFF[V]. It is incomparable w.r.t. succinctness with any of
them.

e d-DNNF satisfies all the queries but SE, and it is unknown whether it of-
fers EQ. As to transformations, it offers only CD (it is unknown whether it
satisfies EN, SEN, or —C, but it is known that it does not satisfy the other
transformations). Thus, the full disjunctive closures of KROM, HORN, K/H,
renH, AFF satisfy less queries than d—DNNF but offer additional transfor-
mations. Furthermore, d—-DNNF is incomparable w.r.t. succinctness with
any of the full disjunctive closures of KROM, HORN, K/H, renH, AFF (un-
less the polynomial hierarchy collapses).

Thus, none of the full disjunctive closures of KROM, HORN, K/H, renH, and
AFF is strictly dominated by any of TP, DNF, PI, OBDD., DNNF'r, and d-DNNF,
viewing the set of queries, the set of transformations and the succinctness relation
as comparison criteria.

6. Conclusion and Perspectives

6.1. Conclusion

In the light of the results reported in the previous sections, the following con-
clusions can be drawn.

Generally speaking, the disjunctive closures of classes £ of propositional rep-
resentations appear as interesting target classes for KC when the application under
consideration expects tractability for the queries and transformations CO, CD and
their consequences (e.g., CE, ME), as well as FO and/or VC (depending on the
type of closure which is considered). Especially, as soon as L is stable by uniform
renaming, the transformations FO, VVC are offered “for free” by the full disjunc-
tive closure L[V, d] (even if the underlying class £ does not offer any of them),
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while CO, CD are preserved by the closure. The other queries and transforma-
tions considered in the KC map are not guaranteed to be offered or to survive a
disjunctive closure operation in the general case.

Considering specific disjunctive closures may allow for preserving additional
queries or transformations, and for increasing the expressiveness of the underlying
language. Thus, the disjunction closure and the full disjunctive closure of any lan-
guage L containing TERM are complete propositional languages, even if L is not
(KROM, HORN, K/H, renH, and AFF are such languages). Clearly enough, fully
expressive propositional languages are highly expected by many applications.

Of course, it cannot be guaranteed in the general case that the size of a com-
piled form remains ’small enough” when a disjunctive closure is targeted. Never-
theless, every disjunctive closure of a class £ includes £ as a subset, hence apply-
ing a disjunctive closure principle to a class £ decreases neither the expressiveness
nor the succinctness of £. Actually, applying any/both of those two principles may
lead to new classes, which can prove strictly more expressive and strictly more
succinct than the underlying class £. Thus, each of the disjunction closure and the
full disjunctive closure of any of KROM, HORN, K/H, renH, and AFF is strictly
more expressive than the underlying language. Furthermore, the full disjunctive
closure HORN[V, 3] (resp. K/H[V,d], renH[V,d]) is strictly more succinct than
the corresponding disjunction closure HORN[V] (resp. K/H[V], renH[V]).

Now, from the application point of view, there are many important problems
in Al and in other fields of Computer Science, where one is interested in encoding
some pieces of information using representations for which CO, CD, FO and ME
are computationally easy.

For instance, in model-based diagnosis, it makes sense to compile the descrip-
tion of the system to be diagnosed (during an off-line phase) in order to be able
to generate efficiently consistency-based diagnoses, for a number of observations
available on-line only [33, 41, 42]. Such diagnoses are the models of the system
description, once conditioned by the given observation and then projected onto the
variables expressing the components statuses (in the simplest case, faulty or not).
Accordingly, if the system description has been compiled first into a representa-
tion which satisfies CO, CD, FO and ME, then the diagnoses can be computed
in input-output polynomial time. Our results thus show full disjunctive closures
of languages L satisfying the stability by uniform renaming condition as valuable
target languages for the compilation, as soon as L satisfies CO and CD (which is
the case for KROM, HORN, K/H, renH, and AFF).

In product configuration and interactive recommendation, it is also important
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to offer some response-time guarantees to the front-end user, especially when the
interaction is Web-based. In order to achieve this goal, an approach consists in
compiling the product catalog into a propositional representation (the models of it
representing the feasible products). Among the operations required by the config-
uration process are propagating the user’s choices (the CD transformation), testing
whether at least one feasible product is compatible with the user’s choices (the CO
query), and listing a fixed number of feasible products compatible with the user’s
choices (see e.g. [43, 44]). Often, the feasible products are described using two
types of variables (or ’codes”, [45]): the customer variables — the variables the
user controls — and the manufacturer control variables — which express some in-
formation related to the factory or to the distribution of the product, and are not
available to the user. Thus, the manufacturer control variables must be forgotten
from the representation before listing the solutions. Our results show that those
operations can be achieved efficiently when the catalog has been compiled into a
full disjunctive closure of a class L of propositional representations, stable by uni-
form renaming, and satisfying CO and CD. In particular, the task of enumerating
a preset number of solutions is feasible in polynomial time in this case (Algorithm
1 given in Section 6.2 is a polynomial delay enumeration procedure).

Beyond Al applications, enumerating models once projected on a given set of
variables appears as a fundamental issue for a number of problems considered in
software engineering and formal methods. Thus, in the setting of automatic case
generation based on propositional logic, such models correspond to test cases [46].
The problem ALL-SAT (or “all-solutions” SAT) which consists in enumerating the
assignments to “important” variables of a propositional representation, which can
be extended to models, turns out to be very significant in symbolic model check-
ing [47], which explains that dedicated algorithms have been developed for solv-
ing it [48]. Indeed, this problem is considered for predicate abstraction [49], and
re-parameterization in symbolic simulation [50]. In reachability analysis, one is
interested in computing the set of states reachable from (resp. leading to) a given
set of states under a transition relation; this is called the image (resp. pre-image)
computation problem. The transition relation 7' can be modeled as a Boolean
function 7" over X U Y U X', complete terms yx over X (resp. X') are used to
denote states before (resp. after) a transition and complete terms 7y over Y repre-
sent inputs making precise the transition. By construction, the models of 3Y.T},
(resp. 3Y.Tj,,,) represent the image of yx (resp. the pre-image of vx) by T'. The
“important” variables are those of X’ (resp. X). Accordingly, many SAT solvers
have been customized into ALL-SAT solvers precisely for computing images or
pre-images (see e.g. [51, 52]) from CNF representations of transition relations. In
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practice, such SAT-based approaches to symbolic model checking can prove much
more efficient than OBDD_-based approaches on some instances, which coheres
with the fact that the succinctness of OBDD. and the succinctness of CNF are in-
comparable [53]. Interestingly, when 7" is represented as a full disjunctive closure
of a class L of propositional representations, stable by uniform renaming, and sat-
isfying CO and CD, both the computation of 3Y.7},, (resp. JY.T},,,) and the
enumeration of its models can be achieved in polynomial time (in the size of the
input plus the size of the output). Contrastingly, no response-time guarantee can
be ensured in the general case for computing a single model when 7" is represented
as a CNF formula.

Thus, for each of the applications above, considering full disjunctive closures
for the representation purpose can prove to be a reasonable choice.

6.2. Perspectives

This work calls for several perspectives.

One of them concerns the problem of closed-world reasoning. Indeed, the
disjunction covers of HORN and renH are known as interesting target languages
when propositional formulae are to be interpreted under some form of the closed-
world assumption, like the extended closed-world assumption (ECWA) [54], the
extended generalized closed-world assumption (EGCWA) [55], the generalized
closed-world assumption (GCWA) [56] or the careful closed-world assumption
(CCWA) [57]. To be more precise, though inference from a propositional formula
interpreted under ECWA, EGCWA, GCWA or CCWA is TT5-hard, its complexity
is at most at the first level of the polynomial hierarchy when the formula belongs
to HORN[V] or to renH[V] [58]. Furthermore, the complexity of inference under
EGCWA falls down to P when HORN[ V] formulae are considered, or when GCWA
is considered and queries are limited to CNF formulae. Finally, it turns out that the
complexity of closed-world reasoning is the same one for HORN[V] formulae and
for DNF formulae, despite the fact that DNF is strictly less succinct than HORN[V].
It would be interesting to identify the complexity of closed-world reasoning for
full disjunctive closures, especially those of HORN and renH.

Another important issue for further research is the design and the evaluation
of compilers targeting the disjunctive closures introduced in the paper. Actu-
ally, compilers targeting some of those closures considered here do exist. Thus,
Boufkhad et al. [6] present some compilation algorithms targeting KROM[V],
HORN[V], K/H[V], and renH[V], and evaluate them on a number of benchmarks.
While the obtained results show the feasibility of computing disjunction closure
compilations, we can hardly use them to compare the practical significance of
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the corresponding closures with OBDD. and DNNFt for which some experimen-
tal results are also available. Indeed, the compilation algorithms given in [6] are
based on an old-style DPLL SAT solver, and the performances of such solvers
are dramatically overtaken by those of modern SAT solvers, based on a CDCL
architecture.

Interestingly, Nishimura et al. [59] have shown that the problem of deter-
mining whether a given CNF formula « has a strong KROM-backdoor set (resp.
a strong HORN-backdoor set) containing at most k variables is fixed-parameter
tractable with parameter k. Similarly, Samer and Szeider [60]) have shown that
the problem of determining whether a given CNF formula o has a KROM-backdoor
tree (resp. a HORN-backdoor tree) containing at most k leaves is fixed-parameter
tractable with parameter k. The algorithm given in [60] can be used to determine
“efficiently” (i.e., for sufficiently ”small” k) whether a KROM[V] compilation or
a HORN[V] compilation of reasonable” size (i.e., linear in k£ and the size of «)
exists. As mentioned in [60]: “There is some empirical evidence that real-world
instances actually have small backdoor sets”. Such instances also have ”small”
HORN[ V] representations (hence, “small” K/H[V] and ”small” renH[V] represen-
tations).” This explains why it makes sense to develop new compilation algorithms
targeting disjunction closures.

Incorporating existentially quantified variables in the representations during
the compilation phase in order to generate full disjunctive closures also appears as
an interesting perspective. Indeed, new variables can be introduced as “names”
given to arbitrarily complex subformulae of the input formula (using equiva-
lences); the point is that equivalence w.r.t. the input formula is preserved when
such variables are existentially quantified. Taking advantage of it can dramatically
reduce the size of the compiled forms (our succinctness results show that exponen-
tial gaps in the representation size can be achieved thanks to existential closure);
the difficulty is to determine when introducing new variables (this is reminiscent
to the general problem of lemmatization in automated reasoning).

Finally, the fact that each of KROM[V|, HORN|[V, 3], and AFF|V] satisfies ABC
paves the way for bottom-up compilation algorithms for those classes. As noted
in [18], this is important for applications from formal verification based on un-
bounded model checking which require bottom-up, incremental compilation of

"Note by the way that determining whether “small” renH[V] representations which are not
HORN[V] representations exist can be computationally demanding since the detection of a strong
renH-backdoor set is W[2]-hard [61].
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formulae, where pieces of information are compiled independently and then con-
joined together. This explains why HORN[V, d], and AFF[V| which offers CD,
FO, ABC, and ME appear as valuable candidates for the image/pre-image com-
putation problem considered in reachability analysis, as discussed above. Indeed,
OBDD_, which offers CD, FO, ABC, and ME as well, has been extensively used
for the purpose of symbolic model checking [62]; furthermore, we have shown
that the succinctness of HORN[V, d], and of AFF[V] are incomparable with the
succinctness of OBDD.. Since each of KROM[V], HORN|V, 3], and AFF|[V] satis-
fies CO and includes CLAUSE, getting ABC is optimal in the sense that no class
of propositional representations containing CLAUSE can satisfy both AC and CO,
unless P = NP.

Acknowledgments

We would like to thank the anonymous reviewers for many helpful comments.

References

[1] A. Darwiche, P. Marquis, A knowledge compilation map, Journal of Artifi-
cial Intelligence Research 17 (2002) 229-264.

[2] H. Fargier, P. Marquis, Extending the knowledge compilation map: Krom,
Horn, affine and beyond, in: Proc. of AAAT’08, 2008, pp. 442—447.

[3] P. Marquis, Existential closures for knowledge compilation, in: Proc. of 1J-
CAI'11, 2011, pp. 996-1001.

[4] H. Fargier, P. Marquis, Extending the knowledge compilation map: Closure
principles, in: Proc. of ECAI’08, 2008, pp. 50-54.

[5] M. Cadoli, F. Donini, A survey on knowledge compilation, Al Communica-
tions 10 (3—4) (1998) 137-150.

[6] Y. Boufkhad, E. Grégoire, P. Marquis, B. Mazure, L. Sais, Tractable cover
compilations, in: Proc. of IICAI’97, 1997, pp. 122-127.

[7] B. Selman, H. Kautz, Knowledge compilation and theory approximation,
Journal of the ACM 43 (1996) 193-224.

[8] R. Schrag, Compilation for critically constrained knowledge bases, in: Proc.
of AAAI’96, 1996, pp. 510-515.

39



[9] P. Marquis, Knowledge compilation using theory prime implicates, in: Proc.
of IICATI’95, 1995, pp. 837-843.

[10] A. del Val, Tractable databases: How to make propositional unit resolution
complete through compilation, in: Proc. of KR’94, 1994, pp. 551-561.

[11] R. Dechter, 1. Rish, Directional resolution: the Davis-Putnam procedure,
revisited, in: Proc. of KR’94, 1994, pp. 134-145.

[12] A. Darwiche, Decomposable negation normal form, Journal of the ACM
48 (4) (2001) 608-647.

[13] G. Gogic, H. Kautz, C. Papadimitriou, B. Selman, The comparative linguis-
tics of knowledge representation, in: Proc. of IJICAI'95, 1995, pp. 862-869.

[14] M. Wachter, R. Haenni, Propositional DAGs: A new graph-based language
for representing Boolean functions, in: Proc. of KR’06, 2006, pp. 277-285.

[15] H. Fargier, P. Marquis, On the use of partially ordered decision graphs
in knowledge compilation and quantified Boolean formulae, in: Proc. of
AAAT’06, 2006, pp. 42-47.

[16] S. Subbarayan, L. Bordeaux, Y. Hamadi, Knowledge compilation properties
of tree-of-BDDs, in: Proc. of AAAI’07, 2007, pp. 502-507.

[17] R. Mateescu, R. Dechter, R. Marinescu, AND/OR multi-valued decision di-
agrams (AOMDDs) for graphical models, Journal of Artificial Intelligence
Research 33 (2008) 465-519.

[18] K. Pipatsrisawat, A. Darwiche, New compilation languages based on struc-
tured decomposability, in: Proc. of AAAI’08, 2008, pp. 517-522.

[19] H. Fargier, P. Marquis, Knowledge compilation properties of trees-of-BDDs,
revisited, in: Proc. of IICAI’09, 2009, pp. 772-7717.

[20] K. Pipatsrisawat, A. Darwiche, A lower bound on the size of decomposable
negation normal form, in: Proc. of AAAI’10, 2010.

[21] A. Darwiche, SDD: A new canonical representation of propositional knowl-
edge bases, in: Proc. of [JCAI’'11, 2011, pp. 819-826.

40



[22] L. Bordeaux, J. Marques-Silva, Knowledge compilation with empowerment,
in: Proc. of SOFSEM’12, 2012, pp. 612-624.

[23] M. Krom, The decision problem for formulas in prenex conjunctive normal
form with binary disjunctions, Journal of Symbolic Logic 35 (1970) 210-
216.

[24] A. Horn, On sentences which are true of direct unions of algebras, Journal
of Symbolic Logic 16 (1951) 14-21.

[25] T. J. Schaefer, The complexity of satisfiability problems, in: Proc. of
STOC’78, 1978, pp. 216-226.

[26] H.Lewis, Renaming a set of clauses as a Horn set, Journal of the Association
for Computing Machinery 25 (1978) 134-135.

[27] H. Kleine-Biining, X. Zhao, U. Bubeck, Transformations into normal forms
for quantified circuits, in: Proc. of SAT’11, 2011, pp. 245-258.

[28] J.J. Hébrard, A linear algorithm for renaming a set of clauses as a Horn set,
Theoretical Computer Science 124 (2) (1994) 343-350.

[29] A. del Val, On 2-sat and renamable Horn, in: Proc. of AAAI’00, 2000, pp.
279-284.

[30] E. Post, The two-valued iterative systems of mathematical logic, Annals of
Mathematical Studies 5 (1941) 1-122.

[31] J. McKinsey, The decision problem for some classes of sentences without
quantifiers, Journal of Symbolic Logic 8 (1943) 61-77.

[32] R. Dechter, J. Pearl, Structure identification in relational data, Artificial In-
telligence 58 (1992) 237-270.

[33] A. Darwiche, Model-based diagnosis using structured system descriptions,
Journal of Artificial Intelligence Research 8 (1998) 165-222.

[34] A. Herzig, J. Lang, P. Marquis, T. Polacsek, Updates, actions, and planning,
in: Proc. of IJCAT’01, 2001, pp. 119-124.

[35] J. Lang, P. Marquis, Resolving inconsistencies by variable forgetting, in:
Proc. of KR’02, 2002, pp. 239-250.

41



[36] J. Lang, P. Marquis, Reasoning under inconsistency: A forgetting-based ap-
proach, Artificial Intelligence 174 (12-13) (2010) 799-823.

[37] H. Fargier, J. Lang, P. Marquis, Propositional logic and one-stage decision
making, in: Proc. of KR’00, 2000, pp. 445-456.

[38] G. Cantor, Beitrige zur begriindung der transfiniten mengenlehre, Mathema-
tische Annalen 49 (1897) 207-246.

[39] J. Hastad, Almost optimal lower bounds for small depth circuits, in: Proc. of
STOC’86, 1986, pp. 6-20.

[40] G. Tseitin, On the complexity of derivation in propositional calculus, Steklov
Mathematical Institute, 1968, Ch. Structures in Constructive Mathematics
and Mathematical Logic, pp. 115-125.

[41] J. Huang, A. Darwiche, On compiling system models for faster and more
scalable diagnosis, in: Proc. of AAAT’05, 2005, pp. 300-306.

[42] P. Torasso, G. Torta, Model-based diagnosis through OBDD compilation: A
complexity analysis, in: Reasoning, Action and Interaction in Al Theories
and Systems, 2006, pp. 287-305.

[43] J.-M. Astesana, L. Cosserat, H. Fargier, Constraint-based vehicle configura-
tion: A case study, in: ICTAI (1), 2010, pp. 68-75.

[44] A. Felfernig, G. Friedrich, D. Jannach, M. Zanker, Developing constraint-
based recommenders, in: Recommender Systems Handbook, 2011, pp. 187-
215.

[45] C. Zengler, W. Kiichlin, Boolean quantifier elimination for automotive con-
figuration - a case study, in: Proc. of FMICS’13, 2013, pp. 48-62.

[46] S. Khurshid, D. Marinov, I. Shlyakhter, D. Jackson, A case for efficient so-
lution enumeration, in: Proc. of SAT’03, 2003, pp. 272-286.

[47] O. Grumberg, A. Schuster, A. Yadgar, Memory efficient all-solutions SAT
solver and its application for reachability analysis, in: Proc. of FMCAD’04,
2004, pp. 275-289.

[48] M. Gebser, B. Kaufmann, T. Schaub, Solution enumeration for projected
Boolean search problems, in: Proc. of CP-AI-OR’09, 2009, pp. 71-86.

42



[49] S. K. Lahiri, R. E. Bryant, B. Cook, A symbolic approach to predicate ab-
straction, in: Proc. of CAV’03, 2003, pp. 141-153.

[50] P.Chauhan, E. M. Clarke, D. Kroening, A SAT-based algorithm for reparam-
eterization in symbolic simulation, in: Proc. of DAC’04, 2004, pp. 524-529.

[51] A. Gupta, Z. Yang, P. Ashar, A. Gupta, SAT-based image computation with
application in reachability analysis, in: Proc. of FMCAD’00, 2000, pp. 354—
371.

[52] H.-J. Kang, I.-C. Park, SAT-based unbounded symbolic model checking,
IEEE Transactions on CAD of Integrated Circuits and Systems 24 (2) (2005)
129-140.

[53] K. L. McMillan, Applying SAT methods in unbounded symbolic model
checking, in: Proc. of CAV’02, 2002, pp. 250-264.

[54] M. Gelfond, H. Przymusinska, T. Przymusinski, On the relationship between
circumscription and negation as failure, Artificial Intelligence 38 (1989) 49—
73.

[55] A. Yahya, L. Henschen, Deduction in non-Horn databases, Journal of Auto-
mated Reasoning 1 (1985) 141-160.

[56] J. Minker, On indefinite databases and the closed world assumption, in: Proc.
of CADE’82, 1982, pp. 292-308.

[57] M. Gelfond, H. Przymusinska, Negation as failure: careful closure proce-
dure, Artificial Intelligence 30 (1986) 273-287.

[58] S. Coste-Marquis, P. Marquis, Knowledge compilation for closed world rea-
soning and circumscription, Journal of Logic and Computation 11 (4) (2001)
579-607.

[59] N. Nishimura, P. Ragde, S. Szeider, Detecting backdoor sets with respect to
Horn and binary clauses, in: Proc. of SAT’04, 2004.

[60] M. Samer, S. Szeider, Backdoor trees, in: Proc. of AAAI’08, 2008, pp. 363—
368.

[61] S. Gaspers, S. Szeider, Backdoors to satisfaction, in: The Multivariate Algo-
rithmic Revolution and Beyond, 2012, pp. 287-317.

43



[62] E. M. Clarke, O. Grumberg, D. Peled, Model checking, MIT Press, 2001.
[63] S. Kleene, Mathematical Logic, John Wiley, 1967.

[64] R. Tarjan, Depth first search and linear graph algorithms, SIAM Journal on
Computing 1 (1972) 146-160.

[65] B. Aspvall, M. Plass, R. Tarjan, A linear-time algorithm for testing the truth
of certain quantified Boolean formulas, Information Processing Letters 8
(1979) 121-123, erratum: Information Processing Letters 14(4): 195 (1982).

[66] B. Aspvall, Recognizing disguised NR(1) instances of the satisfiability prob-
lem, Journal of Algorithms 1 (1) (1980) 97-103.

[67] W. Dowling, J. Gallier, Linear time algorithms for testing the satisfiability
of propositional Horn formulae, Journal of Logic Programming 1 (3) (1984)
267-284.

[68] M. Karpinski, H. K. Biining, P. H. Schmitt, On the computational complexity
of quantified Horn clauses, in: Proc. of CSL’87, 1987, pp. 129-137.

[69] N. Creignou, M. Hermann, Complexity of generalized satisfiability counting
problems, Information and Computation 125 (1) (1996) 1-12.

[70] D. Roth, On the hardness of approximate reasoning, Artificial Intelligence
82 (1-2) (1996) 273-302.

[71] P. Marquis, Consequence Finding Algorithms, Vol. 5 of ”Algorithms for De-
feasible and Uncertain Reasoning” of Handbook on Defeasible Reasoning
and Uncertainty Management Systems, Kluwer Academic Publisher, 2000,
Ch. 2, pp. 41-145.

[72] B. Zanuttini, New polynomial classes for logic-based abduction, Journal of
Artificial Intelligence Research 19 (2003) 1-10.

[73] U. Bubeck, H. K. Biining, Models and quantifier elimination for quantified
Horn formulas, Discrete Applied Mathematics 156 (10) (2008) 1606—1622.

[74] M. Sipser, Borel sets and circuit complexity, in: Proc. of STOC’83, 1983,
pp- 61-69.

[75] Y. Boufkhad, Algorithms for propositional KB approximation, in: Proc. of
AAAT 98, Madison (WI), 1998, pp. 280-285.

44



Appendix: proofs

Proposition 1 For every subset £, £’ of C-QDAG and every subset A1, Ay of
C' U {3,V}, we have:

0. £ C L]A], andif £ C £, then £[A] € LA,

L (L[A])[Ds] C L[A1U Ay,

2. (L[A])[Aq] = L[A].

3. If Ay C Ay then £[A1] € L]A].

4 TF Ay C Ay then (C[A])[As] = £[As] and (L[A])[A] = L[As].

Proof:
0. Obvious.

L. (L[Aq])[As] € LA U A is immediate from Definition 9; indeed, the
construction of any representation from (L£[A;])[A] requires only repre-
sentations from L£[A;] and operators in As; and the construction of any
representation from £[/\;] requires only representations from £ and opera-
tors in AA;. Thus, if representations from £ and operators in /A U Ay are
available, then any representation from (L£[A])[A2] can be generated.

2. (L[A1])[A1] = L[A]: considering the inclusion reported at item 1. in this
proof with Ay = Ay, we get (L[A])[A1] C L[A]; the converse inclusion
L[A] C (L[A1])[A] follows from the inclusion at item 0. in this proof.

3. If Ay € Ay then L[A] C L[As]: the inclusion at item 0. in this proof
shows that £[A;] C (L[A1])[A2], and item 1. in this proof shows that
(L[A1])[A2] € LIAT U Ay]. The fact that L][A; U As] is equal to L][A]
when A; C A, completes the proof.

4. Suppose that Ay C A,. Then, from the equality reported at item 2. in
this proof, since 2\ U Ay = Ay, we have (L[A;])[As] € L[A,] and
(L[A))[A1] € L]A,]. Conversely, the inclusion at item 0. in this proof
shows that L[Ay] C (L]A])[A]; finally, L[As] C (L[A1])[A,] derives
from the fact that £ C L[A;] (which is again ensured the inclusion at item
0. in this proof), and the implication reported at item 0. as well.
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Proposition 2 Let £ be any subset of C~QDAG s.t. L is stable by uniform renam-
ing. We have:

o (LEDMV ~p (LIVDE] ~p £]V,3].
o (LIVDIA] ~p (LIADIV] ~p L[N, V.

Proof: We just prove the first point of the proposition; the second one is similar
(by duality). The facts that £]Vv, 3] <, (£[V])[3] and L]V, 3] <, (£[F])[V] come
immediately from the inclusions L[V, 3] O (£[V])[d] and L[V, d] 2 (L[F])[V]
(see item 1. in Proposition 1). It remains to show that £[V, 3] >, (£[V])[3] and
Lv.3) >, (£E)V.

o L[V,3] >, (L£[V])[d]. This comes from the possibility to turn in polynomial
time any L[V, 3] representation into an equivalent, prenex, one while pre-
serving the set of free variables. The proof is by structural induction. Let o
be any representation from L]V, 3]:

— If v is an £ representation, then it is also an (£[V])[d] representation
due to the inclusion (L[V])[3] 2 L which comes from item 0. in
Proposition 1.

— If « is not an L representation and o = V(fy,...,[,) with §; €
L[v,3] fori € 1,...,n, then by induction hypothesis,® one can com-
pute in polynomial time n representations 1, . . ., 5., € (£[V])[3] such
that for ¢ € 1,...,n, we have 5/ = ;. Hence, fori € 1,...,n,
we can compute in polynomial time X; C PS and ! € L[V] such
that 8/ = 3X;.0! (especially, if 3] is an L[V] representation, then
we take X; = (). Fori € 1,...,n, let X/ be a set of variables
of PS which is disjoint with the set of variables occurring in v and
such that there exists a bijection between X and X;. One can al-
ways find such a bijection since each §; ( € 1,...,n) belongs to
L[V, ], which is stable by uniform renaming since £ is so. Fur-
thermore, since PS is countably infinite, we can always find sets X

8 A key observation here is that all 3; (i € 1,...,n) are pairwise independent, i.e., they do not
share any node and for ¢ € 1,...,n, every arc reaching a node of 3; comes from a node of 3;; if
this was not the case, such a proof by structural induction would not work.
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so that for 4,5 € 1,...,n, if i # j then X/ N X'j = (). Now,
fori € 1,...,n, let 5/[X; < X]] be the representation obtained
by replacing in a uniform way in 5! every occurrence of z € X;
by the corresponding variable ' € X!. Clearly enough, such rep-
resentations can be computed in polynomial time. Since quantified
variables are dummy ones, we have 3X,.5/ = 3X[.5/[X; « X]|.
Hence, we have o = V(5,...,0,) = v(3X,.6{,...,3X,.0)) =
V(EXT.AY Xy« X1, ..., 3X].80[X, < X]]). Since for each i €
1,...,n, we have Var(B/[X; « X)) N U,_1 2 X; = 0, each
3X[.BI[X; « X]] is equivalent to 3| J,_, X}.5/[X; <= X]]. Thus we
get that o = V(3U;_, X}.6/[X1 « X{l,...,3U_, X;.60 X0 <
X)) = 33U Xp v (B[X < Xl BhlX, « X7]). Since
V(BY[X1 « Xi],..., 00X, < X]]) is an L[V] representation, the
conclusion follows. Note that the set of free variables of « is preserved
by the translation.

— If v is not an L representation and o« = Jx.5 with 5 € L[V, ], then
by induction hypothesis, one can compute in polynomial time a repre-
sentation 5 € (L[V])[3] such that 5’ = (3. Since Jx./5" is an (L[V])[3]
representation equivalent to «, the conclusion follows. Again, the set
of free variables of « is preserved by the translation.

e LIVv,d] >, (£[3])[V]. Again, the proof is by structural induction. Let a be
any representation from L[V, J:

— If v is an £ representation, then it is also an (£[3])[V] representation
due to the inclusion (£[3])[V] 2 £ which comes from item 0. in
Proposition 1.

-Ifa=V(,...,0,) with 5, € L[V,3] (Z € 1,...,n), then by induc-
tion hypothesis, one can compute in polynomial time n representations
gl e (L[AD[V] @ € 1,...,n) such that foreachi € 1,...,n, 8! = 5.
Since V(B1, ..., (),) is an (L[d])[V] representation equivalent to «, the
conclusion follows.

- If @ = Jz.8 with § € L[V, 3], then by induction hypothesis, one can
compute in polynomial time a representation 5’ € (L£[3])[V] such that
p' = p. If 5’ is an L[] representation, then Jz.3 also is an L[] rep-
resentation; since it is equivalent to v and since (£[3])[V] 2 L[3] (see.
item 0. in Proposition 1), the conclusion follows. Otherwise we have
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B = V(py,...,0,) where 5 is an L£[d] representation (i € 1,...,n).
By replacement, « is equivalent to Jz. V (/31, .. ., (,,), which is equiv-
alent to V((3x./), ..., (3z.0,,)). Since the latter representation is an
(L£[3])[V] representation, the conclusion follows.

O

Proposition 3 Let £ be any subset of C~QDAG s.t. L is stable by uniform renam-

ing.

If £ satisfies CO (resp. CD),
then £[V], £[3] and L[V, J] satisfy CO (resp. CD).

If £ satisfies CO and CD, then L satisfies CE and ME.
If £ satisfies CO and CD, then £, £[V], £[3] and L]V, J] satisfy MC.

L[V] and L]V, 3] satisfy VC (hence VBC)
and £[d] and L[V, 7] satisfy FO (hence SFO).

If £ satisfies FO (resp. SFO), then L[V] satisfies FO (resp. SFO).

If L satisfies AC (resp. ABC, VC, VBC),
then £[d] satisfies AC (resp. ABC, VC, VBC).

Proof:

e Asto CO, since L[V] C L]Vv,d] and L[] C L]V, d], it is enough to show

that L]V, J] satisfies CO. Let a be any representation from L[V, 3]; since
L[V, 3] ~, (L[V])[3] (cf. Proposition 2), we can compute in time polyno-
mial in the size of o an equivalent representation 5 = 3X. V (51,..., 5,)
where X is a finite subset of PS and each 3; (¢ € 1,...,n) is an L repre-
sentation. We have that « is consistent iff 5 is consistent iff V(/1, ..., 3,)
is consistent iff at least one 3; (« € 1,...,n) is consistent. Since the latter
can be decided in polynomial time, the conclusion follows.

As to CD, let 7y be any consistent term. Let « be an £[V] representation; we
have a = V(f4,...,[,) where each 5; (i € 1,...,n) is an L representa-
tion. Since A distributes over V and existential quantifications “distribute”
over V as well, we have 3 Var(v).(aAvy) = IVar(y).(V(B1, ..., Bu) Ay) =

AVar(y).V(BiAY, ..., Ba AY) =V EBVar(y).(Bi A7), ..., 3Var(y).(B, A
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7v)). If L satisfies CD, then each 3 Var(v).(8; Ay) (i € 1,...,n) can be as-
sociated in polynomial time with an equivalent £ representation ;. Hence
IVar(y).(a A ) is equivalent to the L[V] representation V(5,,...,[3.)
which can be computed in time polynomial in the size of the input. Now let
a be an L[J] representation; we have o = 3X./5 where X is a finite subset
of PS and 3 is an L representation.

We have 3Var(y).(a A v) = IVar(y[X + X']).((3X.6) Av[X « X'])
where v[X < X'| is the representation obtained by replacing in 7 ev-
ery variable € Var(y) N X by a fresh variable 2/, not occurring in [
or 7. Since Var(y[X + X']) N X = (), we have that IVar(y[X <«
X' A((FX.B) Ay[X + X)) =T Var(y[X + X)) UX.(BAY[X « X'])
= 3X.(FVar(y[X + X')).(B A y][X «~ X'])). If L satisfies CD, then
AVar(y[X < X']).(6 Ay[X < X']) can be associated in polynomial time
with an equivalent £ representation 5. Hence 3 Var(7).(a/A7) is equivalent
to the £[3] representation 3X. 3" which can be computed in time polynomial
in the size of the input. Finally, let « be an L[V, 3| representation; since
L[V,3] ~, (L[V])[3] (cf. Proposition 2), we can compute in time polyno-
mial in the size of o an equivalent representation 5 = 3X. V (51,..., 5,)
where X is a finite subset of PS and each 3; (¢ € 1,...,n) is an L repre-
sentation. Then it is enough to combine the two previous proofs to get the
desired result.

We generalize some easy lemmata from [1] to the C'-QDAG case. As to CE,
it is enough to observe that for any C'-~QDAG representation « and any non-
valid clause ¢, we have o = 0 iff o A = is inconsistent iff 3 Var(—d).(a A
—4) is inconsistent.

As to ME, let o be any L representation. Procedure 1 enumerates the mod-
els of « over Var(«). It amounts to searching a decision tree 7" in a depth-
first manner. Each branch of 7T corresponds either to a model of o over
Var(«), or to an implicant of —«. Each model is represented as a set of
literals over Var(«). The procedure is called with v = (). Given a total,
strict ordering over the variables of Var(«a), the function first(«) at Line 4
returns the first variable of a w.r.t. this ordering.

Procedure 1 first consists in testing whether « is consistent (Line 1). If
« 1s inconsistent, then the procedure stops; otherwise, one checks whether
Var(«) is empty or not (Line 2). If this set is empty, then one returns the
model of « stored in the accumulator v (Line 3). In the remaining case,
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Algorithm 1: enumerate(a, 7)

N N U R W N =

input : an £ representation «, and a set +y of literals over Var(«a)

if «v is consistent then

if Var(a) = 0 then
| write(y)
else
x < first(Var(a))
enumerate(qy,, v U {z})
enumerate(a)-,, y U {~x})

one computes the first variable x of « (Line 5). Afterwards, the procedure
enumerates recursively all the models of |, by adding x to the accumulator
7 (Line 6), then all the models of «/-, by adding —x to the accumulator
7 (Line 7). In both cases, a variable is removed (since ¢ Var(a,) U
Var(oy-,)), hence the number of recursive calls for each branch of 7" cannot
exceed the number of variables of «.. Furthermore, since £ satisfies CO and
CD, the time spent between two successive calls is polynomial in the input
size.

Procedure 1 is thus a polynomial delay model enumeration algorithm: a first
model of o (when it exists) is generated in time polynomial in the size of the
input, and after each model generation, the time needed to generate a further
model (or to determine that no more models exist) also is polynomial in the
size of the input. As a consequence, it runs in time polynomial in the size
of the input plus the size of the output.

Due to the inclusions £ C L[V], £ C L[3] C L]V, d] (see Proposition
1), it is enough to show that L[V, 3] satisfies MC. Let o be any L[V, J]
representation. Since L[V, 3] ~, (L[V])[3] (cf. Proposition 2), we can
compute in time polynomial in the size of a an equivalent representation
g =3X.V(p,..., 0B, where X is a finite subset of PS and each ; (i €
1,...,n)is an L representation. Furthermore, we have Var(3) = Var(«a).
Let w be any interpretation over Var(a) and let v be the consistent term
(unique up to logical equivalence) such that Var(vy) = Var(a) and w is a
model of 7. We have w |= « iff v A [ is consistent iff v A V(f5, ..., )
is consistent iff there exists ¢ € 1,...,n such that v A §; is consistent iff
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there exists @ € 1,...,n such that 3Var(v).(8; A ) is consistent. Since £
satisfies CO and CD, the conclusion follows.

The fact that £]V] and L[V, 3] satisfy VC and £[3] and L[V, 3] satisfy FO
is obvious (by construction).

We prove the FO case (for SFO just take X as a singleton). Let a be a rep-
resentation from £[V] and X C PS. By construction, « = V(f,..., 5,)
where each 5; (1 € 1,...,n)is an L representation. Since existential quan-
tifications “distribute” over V, we have 3X.o« = V(IX.01,...,3X.5,).
Now, since L satisfies FO, with each 3X.5; (i € 1,...,n) we can asso-
ciate in polynomial time an equivalent £ representation ;. Applying the
replacement metatheorem,” we get that 3X.«c = V(f;,..., ). Since the
L[V] representation V(f, ..., 3,) can be computed in polynomial time in
the size of « plus the size of X, the conclusion follows.

We prove the AC case. Let us consider n representations «;, ..., o, from
L[3] where L satisfies AC. By construction, for each i € 1,...,n, qa; is
of the form 3X;.3; where X; is a finite subset of PS and ; € L. With
each 3.X;.5; we can associate in polynomial time the equivalent represen-
tation 3X.3;[X; «+ X!] obtained by renaming in a uniform way every
occurrence of variable x € X; by the fresh variable x°. Whenever f3;
belongs to £, 3;[X; < X!] belongs to £ as well (due to the stability
condition). From the replacement metatheorem, we get that A} a; =
A (3X,.8) = N_,(3X!.6:[X; + X]]). By construction, we have
X!NXJ =0 wheni+# j. As a consequence, we have A7, (3X7.5[X; «
X)) =3UL, XL(AL, Bi[X; < X}]) Since L satisfies AC, we can turn
in polynomial time the representation A}, 3;[X; < X!] into an equivalent
representation 3 from L. Since A, o; = 3U;_, X/.0 and |J;_, X}.0 is

°In classical propositional logic, this metatheorem states that if 3 is a subformula of a propo-
sitional formula « and 8’ is a formula equivalent to (3, then the formula obtained by replacing in
« the subformula 8 by (' is a formula equivalent to « [63] (this comes directly from the truth-
functionality of the connectives); this metatheorem also holds for quantified formulae and can be
generalized to the case of DAG-based representations (under some conditions); more precisely,
given any node N of a C'-QDAG representation « let 5y be the subgraph of « given by the set Sy
of nodes of « reachable from N if every arc of « having its extremity in Sy \ {N} also has its
origin in Sy, then for every C—QDAG representation 3’ equivalent to 3, the C—QDAG representa-
tion obtained by removing in « every node and every arc of /3, and redirecting the arcs entering N
to the root of /3’ is a representation equivalent to .
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an L[d] representation, the conclusion follows. The proof is similar for the
remaining cases (ABC, VC, VBC).

Proposition 4

KROM ~,, KROM[d].
KROM[V] ~, KROM|V, J].
AFF ~, AFF[d].

AFF|V] ~, AFF[V, d].

Proof: These polynomial equivalences come easily from the fact that each of
KROM and AFF satisfies FO (cf. Proposition 6), plus the fact that existential quan-
tifications “distribute” over disjunctions. O

Proposition 5 The results in Table 1 hold.

Proof:

CO

VA

It is well-known that each of KROM, HORN, renH, AFF satisfies CO (cf.
[64, 65, 66, 67, 25]). Since deciding whether a C'-QDAG representation is
in KROM (resp. HORN) can be done in polynomial time, we get that K/H
satisfies CO. Then point 1. of Proposition 3 allows to conclude that each of
the [V], [3], and [V, J] closures of those languages satisfies CO as well.

KROM, HORN, K/H and renH satisfy VA since they are subsets of CNF and
CNF satisfies VA. AFF satisfies VA since it satisfies CT (indeed, an AFF
formula « is valid if and only if it has 2" models where n is the cardinality
of Var(a)).

As to renH[d], K/H[J] and HORN[J], the results hold since each of these
languages satisfies IM. Obviously, every subset £ of C'~QDAG which satis-
fies IM satisfies VA as well (indeed, o € L is valid iff it is implied by the
term T). Since the proof that each of renH[d], K/H[d] and HORN[J] satis-
fies IM relies on the fact that HORN[J] satisfies VA, it just remains to show
it. This is easy since a formula « from HORN[J] is valid if and only if its uni-
versal closure is valid. The fact that the validity problem for closed, prenex
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y |CO[VA[CE[IM|EQ|SE|CT][ME | MC |
renH[V,d] | / o vV o o o o vV v/
K/H[V,d] vV o vV o o o o v v/
HORN[\/,E] \/ o \/ o o o o \/ \/

AFF[V] Vi o | V] ololo|lo| V]IV
renH[V] Vi o Vi o o ) ) Vv v
KAV | V[ o [V oo lolo [ V]V
HORN[V] Vo | V| o o o o NV
KROM[V] vV o N o o o o v Vv
renfi |V [V |V V] ]olo ] V]V
I I A VA VA A N R R VA I
HORN[J] ViV VIV oo o o N
A ANARARARARARARARY
renH VIVIVIVIVIV]Io|l VIV
K/H VIVIVIVIVIV]Ie VIV
HORN VI IVIVIVIVIV]Io|l VIV
keon | V| VI VI VIVIVIo [ V]V

KROM, HORN, K/H, AFF, renH, their disjunction, existential and full disjunctive closures
and the corresponding polynomial-time queries. / means “satisfies” and o means “does
not satisfy unless P = NP.”

quantified Boolean formulae with a HORN matrix is in P [68] concludes the
proof.

Finally, none of KROM[V], HORN[V], K/H[V], renH[V], AFF[V], HORN[V, d],
K/H[V,d], renH[V, d] satisfies VA unless P = NP since each of those lan-

guages includes DNF as a subset and DNF does not satisfy VA unless P =
NP.

CE, ME The results come directly from the second item of Proposition 3, given that
each of the sixteen languages considered here satisfies both CO and CD.

IM As to KROM, HORN, K/H, renH, and AFF, the results come from the fact
that if a subset of C'-QDAG satisfies VA and CD, then it satisfies IM (this
slightly extends Lemma A.7 from [1] to C-QDAG representations).

Consider now the case of renH[d], K/H[d] and HORN[J]. Since each
of K/H[J] and HORN[J] is polynomially translatable into renH[d], it is
enough to prove the result for renH[J]. We first show that the implicant
problem for renH[d] formulae can be reduced in polynomial time into the
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SE

implicant problem for HORN[J] formulae. Let 3X.a be a renH[d] formula
such that o is a renH formula, and let v be a term. Let V' be any Horn
renaming for . We have v = 3X .« iff 7 = (IX.a) is valid.

Now, viewing V' as a substitution, one can take advantage of the substitution
metatheorem for propositional logic. This theorem (see e.g., [63]) states that
for any propositional formula > and any substitution o (a mapping which
replaces each variable by a formula), if X is valid, then o(X) is valid. With
Y =7 = (3X.a) and 0 = V, we get that if 7 = (3IX.«) is valid, then
V(v = (3X.«)) is valid. Since for every formula 3, V/(V(/3)) = 3, we also
get that if V(v = (3X.«a)) is valid, then v = (3X.«) is valid. Altogether,
we get that v = (3X.«) is valid iff V(v = (3X.«)) is valid. Now, V (y =
(3X.«)) is valid iff V(y) = V(IX.«) is valid iff V() = V(IX.a).

Let w be any interpretation over Var(a) U X. Since for every variable
x, V(x) is equal to = or is equal to -z, V(w) can be viewed as well as
an interpretation over Var(a) U X. We have w | V(3X.a) iff V(w) &
JX.« (using the substitution theorem and the fact that for every formula
B, V(V(B)) = p) iff there exists an interpretation w’ over Var(a) U X
such that ' = a and Vy € (Var(a) U X) \ X, V(w)(y) = '(y) (by
definition of 3X.«) iff there exists an interpretation V' (w’) over Var(a)UX
such that V(') = V(a) and Vy € (Var(a) U X) \ X, V(V(w))(y) =
V(w')(y). Since V(V(w)) = w, this is equivalent to state that w is a model
of 3X.V(«). As a consequence, we have V(3IX.a) = IX.V ().

Accordingly, v is an implicant of the renH[d] formula 3.X.« iff the term
V() is an implicant of the HORN[J] formula 3.X .V («). As explained above
(see the VA point in the proof), the fact that HORN[J] satisfies CD and VA
shows that it satisfies IM as well. Given that a Horn renaming V' for o can
be computed in polynomial time given «, and that V' (y) (resp. V' («)) can be
computed in polynomial time from v (resp. «) once V' has been computed,
the fact that HORN[J] satisfies IM shows that renH[d] satisfies IM as well.

Finally, none of KROM[V], HORN[V], K/H[V], renH[V], AFF[V], HORN[V, d],

K/H[V,d], renH[V, J] satisfies IM unless P = NP, since none of them sat-
isfies VA unless P = NP.

Determining whether a KROM (resp. HORN, K/H, renH) formula 3 is a log-
ical consequence of a KROM (resp. HORN, K/H, renH) formula o« amounts
to determining whether every clause of /3 is a logical consequence of a.
The fact that each of KROM, HORN, K/H and renH satisfy CE completes
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the proof for those four languages. As to AFF, determining whether an AFF
formula (3 is a logical consequence of an AFF formula o amounts to deter-
mining whether every XOR-clause of 3 is a logical consequence of a.. Now,
a XOR-clause [ & ... & [, is a logical consequence of an AFF formula «
if and only if the AFF formula a A (I; @ ... ® [, ® T) is inconsistent. The
fact that AFF satisfies CO concludes the proof for AFF.

As to renH[d], K/H[J] and HORN[], it is enough to prove the result for
HORN[J] since this language is included in the two remaining ones. Let «
be a CNF formula over n variables x4, ..., x,. Let ¢ be the HORN formula
obtained by replacing every positive literal x; in « by the negative literal
-} (Where each «/ is a fresh variable), conjoined with » additional clauses
—x; Vo (i € 1,...,n). Let §/ be the KROM formula A", (z; V z}). By
construction, « is inconsistent iff o/ A 3’ is inconsistent iff o/ = —f’'. =’

n
i=

is equivalent to \/_, (—x; A =), which in turn is equivalent to the formula
Y =Hy Y Ve Vo) AN (9 Vo) Ay Vi) (where
each y; is a fresh variable). The fact that o/ and ' are HORN[3] formulae
which can be computed in time polynomial in the size of oz shows the CONP-
hardness of the sentential entailment problem for HORN[J] formulae and
concludes the proof.

Finally, none of KROM[V], HORN[V], K/H[V], renH[V], AFF[V], HORN[V, d],
K/H[V,d], renH[V, d] satisfies SE unless P = NP since none of them sat-
isfies VA unless P = NP; the fact that T is a formula from each of these
languages and that « € C'-QDAG is valid iff T |= « concludes the proof.

Each of KROM, HORN, K/H, renH, and AFF satisfies EQ since it satisfies
SE.

As to renH[d], K/H[J] and HORN[3]: for every formulae o’ and +' from
C'-QDAG we have that o = v iff o/ Ay’ = o/. Consider now the formulae
o/ and +" used for proving that none of renH[d], K/H[d] and HORN[J]
satisfies SE unless P = NP (see the item SE in this proof). Since none of
the y; variables occurs in o/, the formula o/ A ' can be turned in linear
time into the equivalent formula FH{yy,...,y,}.(&/ A ((my1 V...V =yn) A
A ((yi V=) A(y; V—a})))), which is a HORN[J] formula. This concludes
the proof.

Finally, none of KROM[V], HORN[V], K/H[V], renH[V], AFF[V], HORN[V, d],
K/H[V, d], renH[V, J] satisfies EQ unless P = NP since none of them sat-
isfies VA unless P = NP; the fact that T is a formula from each of these
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languages and that o € C'-QDAG is valid iff T = « concludes the proof.

CT The result for AFF is proven in [69]. The results for all the remaining
languages come from the fact that the language of negative Krom formu-
lae (i.e., the set of all conjunctions of negative, binary clauses) is included
into each language among KROM, HORN, K/H, renH, KROM[V], HORN[V],
K/H[V], renH[V], HORN[V, d], K/H[V, d], renH[V, d]; furthermore, DNF
is included in AFF[V] since each term is an AFF formula. The fact that
none of the language of negative Krom formulae and DNF satisfies CT [70]
concludes the proof.

MC The results come directly from the third item of Proposition 3, given that
each of KROM, HORN, K/H, renH, and AFF satisfies both CO and CD.

Proposition 6 The results in Table 2 hold.
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KROM, HORN, K/H, AFF, renH, their disjunction, existential and full disjunctive closures
and the corresponding polynomial-time transformations. / means “satisfies,” @ means
“does not satisfy,” while o means “does not satisfy unless P=NP.” | means that the trans-

formation is not always feasible within the language.
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Proof:

CD

FO

When o is a CNF formula and - is a term, a CNF formula 3 equivalent to «,
can be computed in time polynomial in the size of « plus the size of v by
removing from « every clause containing a literal [ from  while removing
the complementary literal [ from every clause of « containing it. Obviously
enough, removing clauses and shortening clauses are two internal laws in
the languages KROM and HORN. This shows that KROM, HORN and K/H
satisfy CD. Similarly, when « is an AFF formula and + is a term (viewed
as a set of literals), an AFF formula 3 equivalent to «|,, can be computed in
time polynomial in the size of « plus the size of v by replacing in « every
occurrence of a literal [ by T when [ belongs to v and by | when [ belongs
to 7. As to renH, it is not hard to see that if V' is a Horn renaming for
a renH formula « then for any term 7, V' also is Horn renaming for the
formula 3 as defined above. Hence renH also satisfies CD.

Then point 1. of Proposition 3 allows to conclude that each of the [V], [3],
and [V, 3] closures of those languages satisfies CD as well.

Each of HORN[J], K/H[d], renH[d], HORN[V, d], K/H[V, d], renH[V, d]
obviously satisfies FO since such a transformation can be done in an im-
plicit way in each of those languages.

As to KROU, it is well-known that the set of prime implicates of a KROM
formula o can be computed in time polynomial in the size of o and that each
such prime implicate is a binary clause (see [71]). Furthermore, the prime
implicates of 3X.a with X C PS are the prime implicates of o which do
not contain any atom from X (Proposition 55 in [71]), showing in particular
that P T satisfies FO. Together, this shows that KROM satisfies FO.

The fact that AFF satisfies FO is given by Lemma 1 from [72].

Now, taking advantage of the fact that for any C'-QDAG representation of
the form V(ay, . . ., a;,) and any finite subset X of PS IX.V(ay,...,a,)is
logically equivalent to V(3 X.aq, . .., 3X.«,), we get that each of KROM[V]
and AFF[V] satisfies FO.

It remains to consider the cases of HORN, K/H, renH and of their disjunc-
tion closures. Consider the HORN formula o, = (., —;) A A\i; (@ V
—y;) A (z; V —z;) and the set X,, = {x1,...,z,} of atoms. Every clause of
the form \/?:1 —l; where [ is y or z is an essential prime implicate of 3.X,,.c,
and there are 2" such clauses. This shows that 3.X,,.c,, has only exponential
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SFO

size CNF representations. Thus HORN does not satisfy FO. Since o, also
is a K/H formula and a renH formula, we also get that none of K/H and
renH satisfies FO.

Finally, the fact that HORN[V] (resp. K/H[V], renH[V]) does not satisfy
FO comes from the fact that HORN[V, d] <, HORN[V] (resp. K/H[V, d]
<s K/H[V], renH[V,d] <, renH[V]). Let us consider the HORN case
(the other cases are similar): forgetting a set of variables X in a HORN[V]
formula o amounts to computing a HORN[V] formula equivalent to the
HORN[V][d] formula dX.«. If HORN[V] would satisfy FO, then every
HORN[V][d] formula dX.«a could be turned in polynomial time into an
equivalent HORN[V] formula. Since HORN[V][J] ~, HORN[V, 3], we would
have HORN[V, 3] >, HORN[V]. But this conflicts with the fact that HORN[ V]
£ HORN[V, J] (in a nutshell, if no polynomial-space translation exists, then
no polynomial-time translation exists).

Obviously, every language satisfying FO satisfies SFO as well. Hence it is
enough to consider the cases of HORN, K/H, renH and of their disjunction
closures.

Let us consider first the HORN and renH cases. For any CNF formula «
(viewed as a set of clauses) and a propositional variable x € PS, one can
compute from « in polynomial time the following three sets of clauses a*,
o™, and o : first remove from « every valid clause to get a set of clauses
a/; now, compute o* as the set of clauses of o/ not containing = as a vari-
able, o™ as the set of clauses of o/ containing x as a (positive) literal, from
which x is removed, and compute o~ as the set of clauses of o’ containing
-z as a (negative) literal from which —x is removed. By construction, the
conjunction § of clauses from o* U {6" V™ | 67 € a™,6” € a"}isa
CNF formula equivalent to (o | —=z) V (« | x), hence equivalent to Jz.cv.
Since none of ot and o~ can contain more clauses or more literals than
«, it comes that 5 can be computed in time polynomial in the size of . It
remains to show that if « is HORN (resp. renH) then the corresponding (3 is
HORN (resp. renH). Assume that o i1s HORN. Then every clause from o is
a Horn clause; furthermore, by construction every clause 07 € a is a neg-
ative clause and every clause 6~ € o~ is a Horn clause; hence, every clause
of the form 6™ Vv ¢~ is a Horn clause. Similarly, if « is renH and V' is any
Horn renaming for it, then 1 also is a Horn renaming for the corresponding
£. Hence HORN and renH satisfy SFO.
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EN

Since both KROM and HORN satisfy SFO, K/ H satisfies SFO as well.

Finally, given that for any C'-QDAG representation o and any atom x € PS,
we have dr.a = (Jz.(a A —z) V Jz.(a A x)), the results for HORN[V],
K/H[V], and renH[V] come that each of these languages satisfies CD and
VvBC.

For any C'-QDAG representations « and /3 and any finite subset X of PS we
have the equivalence V.X.(a A ) = (VX.a) A (VX.3). Furthermore, when
0 is a clause, V.X.¢ is equivalent to the clause obtained by removing from ¢
every literal / such that var(l) € X. Since removing literals from a KROM
(resp. HORN) clause leads to a KROM (resp. HORN) clause, altogether we get
that each of KROM and HORN satisfies EN, and this shows that K /H satisfies
EN as well. Now, if o is a renH formula and V' is a Horn renaming for
it, then the formula obtained by removing in every clause of « every literal
built up from a variable of X still is a renH formula (indeed, V' is still a
Horn renaming for it). Hence, renH also satisfies EN. Let us consider now
the case of an AFF formula ov. We assume w.l.0.g. that « is simplified, i.e.,
for every XOR-clause 0 = I; @ ... ® [ of «, either ¢ reduces to L, or every
literal in ¢ is positive or equal to T and ¢ does not contain more than one
occurrence of any variable and of T (if this is not the case it is sufficient to
exploit the equivalences ~xr =x & T, [ = 1, 6 L = [ to render
« simplified while preserving logical equivalence); it is easy to check that
if v is a simplified AFF formula containing a variable from X, then V.X.«
is equivalent to |, otherwise V.X.0 is equivalent to o. Hence, AFF satisfies
EN.

The fact that HORN[J] satisfies EN is a consequence of Corollary 11 from
[73]. Since KROM[J] ~,, KROM and KROM satisfies EN, as a consequence,
we also have that K/H[d] satisfies EN.

As to the case of renH[d], let us consider a renH[d] formula o = 3X.[.
Let V' be a Horn renaming for 5. Since HORN[J] satisfies EN, for every
finite subset Y of PS, the formula VY.(3X.V(3)) can be turned in polyno-
mial time into an equivalent formula 37.+ from HORN[J]. From the sub-
stitution metatheorem, we have V' (VY.(3X.V(p))) = V(3Z.y). Hence, we
have VY.(3X.V(V(B))) = 3Z.V(~). Since V(V(B)) = B, we get that
VY.(3X.8) = 3Z.V(y). Clearly, 3Z.V(7) is a renH[]] formula; indeed,
V(v) is a renH formula since V(V (7)) = ~ is a HORN formula. Since
37.V () can be computed in polynomial time from VY.(3.X.5), we get that
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NC

renH[d] satisfies EN.

Finally, for any C~QDAG representation « and any finite subset X of PS
we have that « is valid iff V Var(a).« is valid iff V Var(«).« is consistent
(since V Var(«).« has no free variable, it is equivalent to T or to L, hence
it is consistent precisely when it is valid). Hence every language satisfying
CO but not satisfying VA unless P = NP cannot satisfy EN unless P = NP.
This is the case for each language among KROM[V], HORN[V], K/H[V],
renH[V], AFF[V], HORN[V, d], K/H[V, d], renH[V, d].

Every language satisfying EN also satisfies SEN. Hence, each of KROM,
HORN, K/H, renH, HORN[J], K/H[d], renH[d], AFF satisfies SEN. Fur-
thermore, since for any C'-QDAG representation « and a variable x € PS,
we have Vo.ao = o), A o), every language satisfying both CD and ABC
also satisfies SEN. Hence each of HORN[V], KROM[V], HORN[V, d] satisfies
SEN. Since each of HORN[V], KROM[V] satisfies SEN, we also have that
K/H[V] satisfies SEN. Similarly, since each of HORN[V, J], KROM[V, J]
(~p, KROM[V]) satisfies SEN, we have that K/H[V, 3] satisfies SEN.

Finally, as to renH[V] and renH[V, d], let « be a CNF formula over n vari-
ables x1,...,z,. Let o/ be the HORN formula obtained by replacing every
positive literal z; in « by the negative literal -z (where each 2 is a fresh
variable), conjoined with n additional clauses —x; V =z’ (i € 1,...,n). Let
' be the KROM formula A, (x; V z}). By construction, « is inconsistent
iff o’ A 3’ is inconsistent. Now, we associate « in polynomial time with the
renH[V] formula v = (a/ A —y) V (' A y) where y is a fresh variable. ~y
also is a renH[V, d] formula. We can easily check that V.7 is equivalent to
o A B If renH[V] (resp. renH[V, J]) would satisfy SEN, then we could
compute in time polynomial in the size of & a renH[V] (resp. renH[V, d])
formula equivalent to Vy.vy. Since each of renH[V] and renH[V, ] sat-
isfies CO, we would have a polynomial time algorithm for deciding the
satisfiability of «, hence we would have P = NP.

It is obvious that each of KROM, HORN, and AFF satisfies AC.

For K/H, renH, K/H[3], renH[d], the non-representability results () holds
already in the bounded case (A\BC).

For K/H[V], renH[V], K/H[V, d], renH[V, d], the results comes from the
fact that none of these languages satisfies ABC, unless P = NP.
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ABC

Consider now the cases of KROM[V], HORN[V], AFF[V] and HORNJ[V, d].
Observe that every clause is a formula from any of those languages since
every literal is a KROM formula, a HORN formula, and an AFF formula. De-
termining whether a conjunction of clauses is consistent cannot be achieved
in (deterministic) polynomial time unless P = NP (this is the famous SAT
problem). Since each of KROM[V], HORN[V], AFF[V] and HORN[V, J] sat-
isfies CO, none of them can also satisfy AC unless P = NP.

Finally, let us consider the case of HORN[J]: let 3X;.qy, ..., 3X,,.a;, be n
HORN[J] formulae where each o; (i € 1,...,n) is a HORN formula. For
eachi € 1,...,n, let ! be the HORN formula obtained by replacing in «;
every occurrence of z € X by a fresh variable z°, and let X be the set of all
the variables x' generated in the construction of . By construction, every
variable from X does not occur in any a? when j # i. Hence, \;_, 3X;.«;
is equivalent to 3J;_, X!. A, al. Clearly enough, 3| J!_, X/. A\I_, alisa
HORN[J] formula, and it can be generated in polynomial time from 3.X;.q,
ey X5,

Each of KROM, HORN, AFF and HORNJ[J] satisfies ABC since it satisfies
AC.

As to K/H and K/H[d], consider the K/H formulae x V y and —x V -y V
—z. They are also K/H[d] formulae. The conjunction of them neither is
equivalent to a KROM formula, nor is equivalent to a HORN formula, hence
itis not equivalent to a K/ H formula. From Proposition 7, we know that K/H
~. K/H[d], hence this conjunction is not equivalent to a K/H[J] formula.

As to renH and renH[d], consider the two renH formulac o = x Vy V 2
and § = —xV—yV —z. They are also renH[d] formulae. There is no renH
formula logically equivalent to the conjunction o A 3. From Proposition 7,
we know that renH ~, renH[d], hence this conjunction is not equivalent
to a renH[d] formula.

Let us now consider the cases of KROM[V], HORN[V], and AFF[V]. Let o =
V(ag,...,a,) and B = V(fBy, ..., Bm) be two KROM[V] (resp. HORN[V],
AFF[V]) formulae. Then the formula \/7, \/7Z, (a; A B;) can be computed
in time polynomial in the size of « plus the size of 3, and is a KROM[V]
(resp. HORN[V], AFF[V]) formula logically equivalent to the conjunction
a A pB.

Let us focus on the case of HORN[V, d]. Let o and 3 be two HORN[V, d]
formulae. From Proposition 2, since HORN is stable by uniform renaming,
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one can compute in polynomial time a HORN[V][J] formula 3X.a/ (resp.
3Y.5’) equivalent to « (resp. [3) where o (resp. ') is a HORN[V] formula.
Let o (resp. ") be the HORN[V] formula obtained by replacing in o (resp.
B") every occurrence of x € X (resp. € Y') by a fresh variable 2" and let
X' (resp. Y) be the set of all variables z’ generated in the construction of o
(resp. 8”). By construction « A 5 is equivalent to (3X.a’) A (3Y./5’), which
is in turn equivalent to 3X’ U Y".(a” A 5”). Now, HORN[ V] satisfies ABC.
Hence, a HORN[V] formula -y equivalent to o’ A 3” can be generated in time
polynomial in the size of o plus the size of 5”. Accordingly, 3X'UY’ .~y is
a HORN[V, J] formula equivalent to o A 3, and it can be computed in time
polynomial in the size of « plus the size of (.

Finally, let us consider the cases of K/H[V], renH[V], K/H[V, J], renH[V, d].
Let o be a CNF formula over n variables z1, ..., x,. Let o be the HORN
formula obtained by replacing every positive literal z; in « by the negative
literal -z, (where each x/ is a fresh variable), conjoined with n additional
clauses —x; V- (i € 1,...,n). Let 5’ be the KROM formula A", (z; V z}).
Observe that 3 is consistent, hence each of o’ and ' is a K/H formula and
renH formula. As a consequence, each of them also belongs to K/H[V],
renH[V], K/H[V, 3], and renH[V, J]. Furthermore, both o/ and 3’ can be
computed in time polynomial in the size of a. By construction, « is con-
sistent iff o/ A ' is consistent. If any of K/H[V], renH[V], K/H[V, 3], or
renH[V, d] would satisfy ABC, since each of these languages satisfy CO,
we would have P = NP.

VC The non-representability results for KROM, HORN, K/H, renH, AFF, HORN[],
K/H[3], renH[d] come directly from the corresponding non-representability
results for VBC. The fact that each of KROM[V], HORN[V], K/H[V], renH[V],
AFF[V], HORN[V, d], K/H[V,d], renH[V, d] satisfies VC is immediate
from their definitions.

VBC Consider the two KROM formulae o« = (z Vy) A (—yV —z) and § = -z A z.
Each of o and  belongs as well to K/H, renH, K/H[d], renH[d]. Now,
a V [ is logically equivalent to the formula (z V y V 2) A (—z V —y V —2)
for which no equivalent KROM formula (resp. K/H formula, renH formula)
exists. From Proposition 7, we know that KROM ~, KROM[]] (resp. K/H
~¢ K/H[d], renH ~, renH[d]), hence there are no KROM[J] formula (resp.
K/H[d] formula, renH[d] formula) equivalent to o V 3.

As to the HORN case and the AFF case, it is enough to consider & = z and
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[ = y: no HORN formula and no AFF formula is equivalent to o VV 3. From
Proposition 7, we know that HORN ~, HORN|[d], hence there is no HORN[J]
formula equivalent to a V f3.

Finally, the fact that each of KROM[V], HORN[V], K/H[V], renH[V], AFF[V],
HORN[V, d], K/H[V, d], renH[V, d] satisfies VBC comes from the fact that
each of them satisfies VC.

—C Consider the KROM formula o = (—z V y) A(mz V 2) Az V —y) A(-y V z)
Az V =2) A(y V —z). « also is a HORN formula, a K/H formula, a renH
formula, a HORN[d] formula, a K/H[d] formula, and a renH[d] formula.
But —« is equivalent to the formula (z V y V 2) A(—x V =y V —z) for which
no equivalent KROM formula (resp. HORN formula, K/H formula, renH
formula) exists. From Proposition 7, we know that HORN ~, HORN[J], K/H
~. K/H[3], and renH ~, renH[d]. Accordingly, the ~C transformation is
not always feasible in any of KROM, HORN, K/H, renH, HORN[J], K/H[]],
renH[d].

Similarly, consider the AFF formula @« = —x A —y. No AFF formula is
equivalent to —«, hence the —C transformation is not always feasible in
AFF.

As to KROM[V], HORN[V], K/H[V], let us consider the DNF formula «,, =
Vi (0 A =y A —zi); o, is @ KROM[V] formula, a HORN[V] formula and
a K/H[V] formula. Now, in the proof of Proposition 11 (see Table 9), we
show that the renH formula A} (x; V y; V 2;) equivalent to -y, has no
polynomial-size representation in K/H[V], hence the conclusion follows.

Finally, let us consider the cases of AFF[V], renH[V], renH[V, d], K/H[V, J]
and HORN[V, d]. DNF is a subset of each of these languages. Now, a DNF
formula « is valid iff -« is inconsistent. The fact that each of AFF[V],
renH[V], renH[V, d], K/H[V, J] and HORN[V, J] satisfies CO completes
the proof.

Proposition 7

e HORN/[d| ~, HORN.

e K/H[J| ~ K/H.
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e renH[d| ~, renH.

Proof:

e HORN, K/H: Every prime implicate of a HORN formula (resp. a KROM for-
mula) « is a Horn clause (resp. a binary clause). Since the prime implicates
of X .« for a finite subset X of PS and a C'-DAG representation « are the
prime implicates ¢ of « such that Var(d) N X = 0, we get that 3X .« is
equivalent to a HORN formula (resp. a KROM formula) when « is a HORN
formula (resp. a KROM formula).

e renH: Let abe a renH formula. A PI formula equivalent to 3.X.« is given
by the conjunction 3 of all prime implicates of o not containing any variable
from X. If V is a Horn renaming for «, then V() is a HORN formula.
Since V'(f) is equivalent to 3X.V («) and since HORN[3| ~, HORN, V()
is equivalent to a HORN formula. This shows that 3 is a renH formula (V/
is a Horn renaming for it) and this concludes the proof.

Proposition 8 KROM[V], HORN[V], K/H[V], renH[V], AFF[V], HORN[V, 3|, K/H[V, 3],
renH[V, J] are complete propositional languages.

Proof: This comes easily from the fact that TERM is included in each of KROM,
HORN and AFF; as a consequence, its disjunction closure TERM[V] is included
into each of eight closures above; the fact that DNF = TERM|V] is complete ends
up the proof. o

Proposition 9

e HORN[J] <, HORN.
e K/H[J] <, K/H.

e renH[d| <, renH.

renH and K/H[J] are incomparable w.r.t. <,.

K/H and HORN[J] are incomparable w.r.t. <.
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Proof: Let us consider first the three first items. For £ in{HORN, K/H, renH}, we
have to prove that £[3] <, L, i.e., L[J] <; Land £ £, L[3]. That L[3] <, L comes
immediately from the inclusion £[3] D L (cf. item 0. of Proposition 1). The other
way around, consider the HORN[J] formula o, = {y1,...,yn}-(Vie, —wi) A
Nz (=2 V yi) A (—z V y;))). Since HORN C K/H and HORN C renH, this is
also a K/H[3| formula and a renH[3] formula (cf. item 0. of Proposition 1). Since
o, has 2" essential prime implicates, it does not have a CNF representation of size
polynomial in n. Since HORN, K/H, and renH are subsets of CNF, the language
CNF is at least as succinct as any of them, so «,, does not have a representation of
size of polynomial in n as a HORN formula, a K/H formula or a renH formula.
For the last two items, we have to prove that renH £ K/H[J], K/H[T] £,
renH, K/H £, HORN[J|, HORN[J] £, K/H. From Proposition 7, we know that
K/H[3] ~. K/H, and that HORN[J] ~, HORN. Furthermore, we know that renH
<. K/H <. HORN (cf. Section 5). Altogether, this shows that renH <, K/H[J]
and both <, HORN[3|. Especially, we have K/H[J] €. renH and HORN[3| £,
K/H. Due to the fact that the relation <, is included into the relation <., we have
that for any subsets £; and £, of C-QDAG, if £; L. Lo, then L, £, L5. This
shows that K/H[J] £ renH and HORN[J] £, K/H. Finally, in order to prove that
renH £, K/H[3] and K/H £, HORN[3], it is enough to consider again the horn[3]
formula o, = I{y1, .., yn}-(Viey yi) AN (52 Vyi) A (52 Vi) We
have shown above that this formula also is a K/H[3] formula but that it does not
have a representation of size of polynomial in n as a renH formula or as a K/H
formula. This concludes the proof. 0

Proposition 10
e HORN[V, dJ] <, HORN[V].
e K/H[V,d| < K/H|[V].
e renH[V,d] <; renH|[V].

Proof: We focus on AC3, the class of propositional representations containing all
disjunctions of CNF formulae and all conjunctions of DNF formulae. Since every
formula from HORN|[V], K/H[V] or renH[V] is a disjunction of CNF formulae,
each of the languages HORN|V/|, K/H[V], and renH[V] is a subset of AC3, hence
we have AC3 <, HORN[V], AC3 <, K/H[V|, and AC3 <, renH|[V]. In order to
prove the proposition, it is thus enough to show that AC3 £, HORN[V, 3], AC3
£s K/H[V, 3|, and AC3 £, renH[V, d|. Since HORN C K/H and HORN C renH,
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we have the inclusions HORN|[V, d] C K/H[V, d] and HORN[V, J] C renH|V, J|
(cf. item 0. of Proposition 1), which imply that K/H[V, dJ] <, HORN[V, 3], and
renH[V, 3] <, HORN]V, 3]. Therefore, in order to show that AC3 £, HORN|V, 3],
AC3 £, K/H[V,d], and AC3 £, renH[V,d], it is enough to show that AC3
Zs HORN[V,d]. We do it by exhibiting a HORN|[V, dJ] formula which has no
polynomial-sized AC 3 representation.

The proof is based on a theorem due to Sipser [74]. This theorem can be
expressed as follows: consider any Boolean function af over n*~2 variables,
represented by a NNF formula of depth £ > 1 and such that all the leaves are
labeled by variables occurring once in the formula, the ¢thlevel ¢z € 1,... , k—1)
from the bottom consists of nodes labeled by A (resp. V) when i is even (resp.
odd), the outdegree of the root node and the deepest internal nodes (those at depth
k — 1) is equal to n > 1 and the outdegree of every other internal node is equal to
n?. Sipser showed that such an o} cannot be represented by a polynomial-sized
circuit over {—, V, A} of depth at most k& — 1.

Consider the Boolean function o over n® variables. By construction, it can
be represented by a disjunction of n conjunctions i, ..., 3, of DNF formulae,
where each 3; (i € 1,...,n) is the conjunction of n* DNF ~,; (j € 1,...n?),
each DNF v;; (j € 1,...n?) consists of the disjunction of n? terms 07, j, k (k €

n?), and finally each term &1, j, k (k € 1,...n?) consists of the conjunction

of n negated variables —z; ;; (I € 1,...,n) occurring only once in o. For each
i €1,...,nand j € 1,...n2 consider now the HORN formula h; ; such that
hij -

TL2
(\/ “Wijk)
k=1

h; ; contains n® + 1 clauses of size at most n?, hence the HORN formula A"

||>3

n
/\ ylmjvk \/ —\xivjzkzl)'

2
j=1 h
contains n° + n? clauses of size at most n?. Let Y = U¢=1(Uj=1(Uk=1{yi,j,k}))-

2
By construction, the HORN[V, 3] formula 3Y.(\/;_, (A}, %)) can be generated

in time polynomial in n. From Sipser theorem, oy has no polynomial—sized AC3
representation. It remains to show that o} is equivalent to 3Y.(\/7_, ( /\;il hij)).
First of all, since existential quantifications “distribute” over disjunctions and
since each y; ;1 (0 € 1,...,n,j € 1,...,n* k € 1,...,n?) does not occur
inhyy (@ €1,...,n,5 €1,....,n% unless i = i and j/ = j, we have that

n TL2 n2 TL2 .
YV (A= hig)) s equwalent to Vi  (Aj=; 3U=1 {1k }-hij). Finally, by
2
construction, foreachi € 1,...,nand j € 1,...,n? Yij = \/Z:1 0. is the IP
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. 2 . . . .
representation of 3| J,_,{y: ;x}.hi ;. hence it is equivalent to it. The replacement
metatheorem for propositional logic concludes the proof. o

Proposition 11 The results in Table 3 hold.

] | AFF[V] [ rend[V,3] | K/H[V,T] | HORN[V,T] | KROM[V] |

AFF[\/] ~s gs %s gs ﬁs
ren[V, J] £s ~s <s <s <s
K/H[\/, El] %s fs ~s <s <s
HORN[\/, 3] ﬁs gs ﬁs ~s gs
KROM[V} ﬁs fs fs fs ~s

The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, and
renH.

Proof: The proof is broken into six steps, where we prove some succinctness
relationships between languages, and then apply transitivity of <, to possibly
infer new relationships. Associated with each step of the proof is a table in which
we mark all relationships proved at the step.

Table 5: From the obvious equalities and inclusions HORN[V, d] C K/H[V, d],
HORN[V, d] C renH[V, d], KROM[V] C K/H[V,d], we get the results given in
Table 5.

Table 6: Since K/H[V, d] ~, K/H[3][V] (cf. Proposition 1), every K/H[V, J] for-

mula can be associated in polynomial time with an equivalent disjunction \/"_, 3X;.5;

of K/H[d] formulae. Since KROM satisfies CO, we can easily determine in polyno-
mial time which f3; are consistent. All the 3; ( € 1,...,n) which are inconsistent

] | aAFF[V] | renH[V,T] | K/H[V,3] | HORN[V, 3] | KROM[V] |

AFF[V] 1~ 1
renH[V, 3| I~ 1<,1

K/H[V, 3] 1~ 1<;1 1<,1
HORN|[V, J] 1~ 1

KROM|[V/] 1~

Table 5: The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, and
renH.
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] \ AFF[V] \ renH[V, 3] \ K/H[V, 3] \ HORN[V, 3] \ KROM[V] \

AFF([V] ~g
renH[V, ] ~g 1<1 <s 1<,1
K/H[\/, El] ~s <s <s
HORN(V, J] ~

KROM[V] ~g

Table 6: The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, and
renH.

can be removed from the disjunction without questioning equivalence (if they are
all inconsistent, the input formula is associated with |, which is a renH[V, d]
formula). In the remaining case, since every consistent KROM formula is a renH
formula, the resulting disjunction is a renH[V, 3] formula equivalent to the input
formula. Hence we get the results given in Table 6.

Table 7: Let us now show that HORN[V, J] £, KROM[V, d], HORN[V, d] £,
K/H[V, d], and HORN[V, d] £, renH[V, d]. To do so, it is enough to prove that
HORN[V, 3] £, KROM. Consider the KROM formula o, = A, (x; V y;) for any n.
Towards a contradiction, suppose that there exists in HORN[V, J] a formula equiv-
alent to «,, and whose size is polynomial in n; since HORN[V, J] ~,, HORN[3][V]
(cf. Proposition 1), there exists as well a HORN[J][V] formula g = \/:il 1X;.06;
equivalent to «,, and whose size is polynomial in n. Especially, m must remain
polynomial in n. We also know that HORN[J] ~. HORN (cf. Proposition 7).
Hence, if 3 exists, then there also exists a HORN[V] formula v = \/;il 7; equiva-
lent to «;, and with m polynomial in n. Note that the size of ; (z € 1,...,m) can
be exponential in the size of 3; (this does not matter for the remaining part of the
proof).

By construction, «,, has 2" minimal models w over Var(a,,), where for each
1 € 1,...,n, exactly one of the two variables x; and y; are set to 1 by w. Consider
now any pair w, w’ of distinct minimal models of «,,; by construction, and(w,w")
maps each variable to 0, hence it is not a model of «,,. Thus, as a consequence of
the characterization of HORN by closure of models, w and w’ cannot be models of
the same formula ~;. Therefore, every HORN[V] formula v = \/" | 7; equivalent
to «,, must be such that m > 2". This shows that there is no HORN|[V, d] formula
equivalent to o, and whose size is polynomial in n. Thus, we get the results given
in Table 7.
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] \ AFF[V] \ renH[V, 3] \ K/H[V, 3] \ HORN[V, 3] \ KROM[V] \

AFF([V] ~g
renH[\/, Eﬂ ~s <s <s <s
K/H[\/, El] ~s <s <s
HORN|[V, J] 1 L1 1 L1 ~g 1<s1
KROM|V, ] ~s

Table 7: The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, and
renH.

Table 8: Let us now show that KROM[V] £, HORN[V, 3], KROM[V] £, K/H[V, T],
and KROM[V] £, renH[V,d]. To do so, it is enough to prove that KROM[V]
«s HORN. Consider the HORN formula «,, = A, (—z; V —y; V —z;) for any
n. Towards a contradiction, suppose that there exists in KROM[V] a formula v =
/i, 7i equivalent to a;,, and whose size is polynomial in n; then m must remain
polynomial in n.

By construction, «,, has 7" models over Var(«,). How many models of a,
can be models of the same v; (¢ € 1,...,m)? Let us consider any wy, wy, w3 €
Mod(;), it cannot be the case that for any ¢ € 1,...,n, we have wy(z;) = 0,
wi(y;) = Lwi(z) = Lwa(z:) = 1, wa(ys) = 0, wa(z) = 1, ws(z) = 1, ws(ys) =
1, ws(z;) = 0. Indeed, if this were the case, we would have maj(wy, wa, ws3)(x;) =
maj (wy, ws, ws)(y;) = maj(wr,wa,ws)(z;) = 1. If ; is a KROM formula, then
maj (wq,wq, ws) should also be a model of ;. But maj(w;, ws, ws) is not a model
of a,. Thus, each ; cannot have more than 6" models of «,, over Var(w,).
Subsequently, the pigeon/hole principle shows that at least [(Z)™] KROM formulae
v; are required to cover the models of cv,. The fact that [(£)"] is exponential in
the size of v, concludes the proof. By transitivity of <, we get the results given
in Table 8.

Table 9: We also have to show that K/H[V,d] £, renH[V, d]. To do so, it is
enough to prove that K/H[V,d] £, renH. Consider the renH formula «,, =
Ny (z; V y; V 2;) for any n (Var(oy,) is a possible Horn renaming for it, since
if one replaces in o, every literal from L 4, (4,,) by its complementary literal, one
gets a HORN formula).

Towards a contradiction, suppose that there exists in K/H[V,d] a formula
equivalent to cv,, and whose size is polynomial in n; since K/H[V, 3] ~, K/H[J][V]
(cf. Proposition 1), there exists as well a K/H[J][V] formula § = \/fil 1X;.5;
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] \ AFF[V] \ renH[V, 3] \ K/H[V, 3] \ HORN[V, 3] \ KROM[V] \

AFF([V] ~g
renH[\/, Eﬂ ~s <s <s <s
K/H[\/, El] ~s <s <s
HORN|[V, J] L L ~g L
KROM|V] 1 <51 1 L1 1< ~g

Table 8: The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, and
renH.

] | aAFF[V] | renH[V,T] | K/H[V,3] | HORN[V, 3] | KROM[V] |

AFF[V] ~g
renH[\/7 E” ~s <s <s <s
K/H[\/, El] 1 ﬁs 1 ~s <s <s
HORN[V, J] Zs £s ~s £s
KROM|[V] Ls Ls L ~

Table 9: The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, and
renH.

equivalent to «,, and whose size is polynomial in n. Especially, m must remain
polynomial in n. We also know that K/H[J] ~. K/H (cf. Proposition 7). Hence,
if B exists, then there also exists a K/H[V] formula v = \/?;1 v; equivalent to a,
and with m polynomial in n.

Let us now prove that if such a ~ exists, then there also exists a KROM[V]
formula 6 = \/]", 0, equivalent to ,, and with m polynomial in n. Consider any
K/H formula ~; (z € 1,...,m) and suppose that it is a HORN formula. Then ~;
is equivalent to an implicant of «,,. This is obvious if 7; is inconsistent. In the
remaining case, every clause x; Vy; V z; (1 € 1,...,n) of a,, must be implied by
a prime implicate of 7;, which must be a Horn clause; hence this prime implicate
must be equivalent to xz;, y; or z;. Accordingly, v; must be equivalent to a term,
hence to a KROM formula.

It remains to show that «,, has no polyspace representation in KROM[V]. The
proof is similar to the one used for showing that KROM[V, 3] £, HORN (this is not
surprising since «, is a reverse Horn CNF formula). We get the results given in
Table 9.
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Table 10: Finally, we show that AFF[V] is incomparable w.r.t. <, w.r.t. any of
renH[V, d], K/H[V, d], HORN[V, d] and KROM[V]. We first show that renH[V, d]
L AFF, which proves enough to conclude that renH[V, d] £, AFF[V], K/H[V, J]
£ AFF[V], HORN[V, 3] £, AFF[V], and KROM[V] £, AFF[V].

Let a, = AI_,(z; ® y; ® z; @ T). By construction «,, is an AFF formula.
Furthermore, the restriction of any model of «,, over any {z;,v;, z;} (0 € 1,...,n)
is of the form 000, 011, 101 or 110. Thus, v, has 4" models over Var(a,). Let
£ be a renH[V, 3] formula equivalent to c,. Since renH[V, 3] ~, renH[J][V]
(cf. Proposition 1), 5 is polynomially translatable into a formula \/}" 3; from
renH[J][V]. Therefore, if S is a polynomial-sized representation of «,,, then
V2, B; also is a polynomial-sized representation of «,, which implies that m
must not be exponential in n.

Since renH[d] ~, renH (cf. Proposition 7), each 5; (: € 1,...,m) can be
translated into an equivalent renH formula +; (which size can be exponential in
the size of f3;, but this does not matter). The point is that if S has a renH[3][V]
representation as a disjunction of m renH[d] formulae, then it also has a renH[V]
representation as a disjunction of m renH formulae.

Since each v; (¢+ € 1,...,m) is a renH formula which entails «,,, from
[75], there exists a model V; of «,, such that V; is a Horn renaming for ~;, and
Vi(vi) E Vi(ay,). As explained above, the restriction of V; over any {z;, y;, z; }
(2 € 1,...,n) is of the form 000, 011, 101 or 110. Since applying V; leads to
renaming an even number of variables in each set {z;,y;,z;} (i € 1,...,n), we
necessarily have Vi(z; Dy, @ 2, @ T) = 2; D y; ® z; & T, and subsequently
Vilay) = ay.

Thus, we get that \/;", Vi(v;) is a HORN[V] formula equivalent to c,. At
this stage, we have shown that if «,, has a polynomial-sized representation as
a renH[V, d] formula, then it must also have a HORN[V] representation with a
number of disjoints that is polynomial in n.

We are now going to prove that this is not the case, i.e., the number of disjoints
in any HORN[V] formula \/;", d; equivalent to «, actually is exponential in n.
Consider the subset S of models w of «,, over Var(a,) such that for each i €
1,...,n the restriction of w over {x;, y;, z;} is of the form 011, 101 or 110. Every
pair of distinct models w and w’ from S is such that and(w,w’) is not a model
of «a,; indeed, there must exist z € 1,...,n such that the restrictions of w and
w’ over {z;,y;, z; } differ, and and(w,w’) is not a model of z; ® y; ® z; & T (its
restriction over {x;, y;, z;} is of the form 001, 010 or 100). Thus, because of the
closure property of HORN formulae, every pair of distinct models in .S cannot be
models of the same HORN formula ;. Since S contains 3™ models, the number
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] \ AFF[V] \ renH[V, 3] \ K/H[V, 3] \ HORN[V, 3] \ KROM[V] \

AFF[V] ~g 1 L1 1451 [ | 1<s1
renH[\/, Eﬂ 1 gs 1 ~s <s <s <s
K/H[\/, El] 1 gs 1 ﬁs ~s gs Ss
HORN[\/v 3} 141 £s £s ~s s

KROM|V] [ | Ls L L ~s

Table 10: The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H,
and renH.

m of disjoints in \/!", d; is lower bounded by 3". This shows that o, has no
polynomial-sized representation as a renH[V, 3] formula.

Conversely, let us show that AFF[V] is not at least as succinct as any of
renH[V, d], K/H[V, d], HORN[V, d] and KROM[V]. Consider the formula «,, =
Ai, (—z; V —y;) for any n. It is a KROM formula and a HORN formula. Hence, it
is also a K/H formula and a renH formula. Since Var(«,,) contains 2n atoms, 4"
interpretations over Var(c,) have to be considered. Among them, one can find 3"
models of «,,, only, since for each ¢ € 1, ..., n, there are only 3 truth assignments
of x; and y; (over the four possible assignments of those two variables) which sat-
isfy —x;V—y;. Now, there is no AFF formula 3 implying v, and with strictly more
than 2" models (taken in the set of models of «,, since § |= «,, must hold). By
reductio ad absurdum: if this were the case, then one could findz € 1,...,n and
wy,wa, w3 € Mod(ay,) such that wy(x;) = 0, wi(y;) = 0, wa(z;) = 0, wa(y;) = 1,
ws(z;) = 1, ws(y;) = 0. fwy, we, w3 € Mod(f) and (3 is an AFF formula, then the
affine closure property requires @&(wq,wo,ws) to be a model of /3, hence a model
of av,. But ®(wy, wo,ws) falsifies —x; V —y;. Subsequently, from the pigeon/hole
principle, every AFF[V] formula equivalent to ¢, must contain at least f(%)”}
AFF formulae as disjuncts. The fact that [(2)"] is exponential in the size of a,
concludes the proof.

Proposition 12 The results in Table 4 hold.

Proof: Again, the proof is broken in a number of steps, where we prove some
succinctness relationships between languages, and then apply transitivity of <; to
possibly infer new relationships. Associated with each step of the proof is a table
in which we mark all relationships proved at the step.
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\ AFF[V] \ renH[V, 3] \ K/H[V, 3] \ HORN[V, 3] \ KROM[V, J] \

CNF | £sZs | Zs Zs Ls» Zs Zs, Zs Ls, Zs
PI gs’ zs gs’ 28 ﬁ& zs gs’ zs $3a zs
DNNF't $Sa zs gs’ zs ﬁ& Zs $s> zs gs, zs
d—DNNF :’ Zs 29 \ZS :’ Zs :’ zs :’ Zs
DNF f& s $57 >s g& >s $59 >s gm s
Ip gs, Zs ﬁs, >s gs, >s ﬁm Zs ﬁm Zs
OBDD < ﬁs, zs gs’ 28 ﬁs’ Zs ﬁ& 2‘5 ﬁs’ zs

Comparing w.r.t. succinctness the full disjunctive closures of KROM, HORN, K/H, renH,
and AFF, with OBDD., IP, DNF, d-DNNF, DNNFr, PI, and CNF. * means that the result
holds unless the polynomial hierarchy collapses.

Table 11: Let £ be any language among AFF[V], renH[V], K/H[V], HORN[V],

KROM[ V], and the corresponding existential closures renH[V, 3], K/H[V, d], HORN[V, J].
Since TERM C AFF, TERM C HORN, TERM C KROM, HORN C renH and KROM

>, renH, we obviously have DNF >, £, hence we have DNF >, £. In [1], it

is proven that PT >, CNF, DNF %, CNF, DNF », OBDD., and IP >, DNF. By
transitivity of <,, we get the results given in Table 11.

] | aFF[V] | renH[V,d] | K/H[V,3] | HORN[V, 3] | KROM[V] |

CNF 1 Z51 1 Z51 1 Zs1 1451 1451
PI 141 1451 141 141 1Zs1
DNNE'7
d-DNNF
DNF 1> 1>51 1>1 1>1 1>1
1P 1>51 1>51 1>51 1>51 1>51
OBDD<« 1Z51 1Zs1 1Z51 1 <1 [ |

Table 11: Comparing w.r.t. succinctness the full disjunctive closures of KROM, HORN, K/H, renH,
and AFF, with other classes of propositional representations.

Table 12: Consider the following consistent KROM formula o, = A, (—z; V
—y;); it is also a HORN formula, hence it belongs to the disjunction closure and
to the full disjunctive closure of each language among KROM, HORN, K/H, and
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renH. a, has 2" essential prime implicants'®, hence there is no polynomial-sized
IP formula and no polynomial-sized DNF formula equivalent to it. Similarly,
the AFF formula £, = @?:1 x; (which is also an AFF[V] formula) has 27!
essential prime implicants, hence there is no polynomial-sized IP formula and no
polynomial-sized DNF formula equivalent to it. We get the results given in Table
12.

] | aFF[V] | renn[V,3] | K/H[V,3] | HORN[V, 3] | KROM[V] |

CNF Zs £s Zs y Zs
PI £s £s £s £s £s
DNNF't
d—-DNNF
DNF [ 1€ 2> | 0L > [ 0L >0 | 1 E 2> [ 1L 12>
Ip VL L2 | 0E 2> [ 1L >y | 1L L > [ 1 2>
OBDD~ £ £ £s £s £s

Table 12: Comparing w.r.t. succinctness the full disjunctive closures of KROM, HORN, K/H, renH,
and AFF, with other classes of propositional representations.

Table 13: In the proof of Proposition 11, we have shown that the AFF formula
an = Ny (2;®y;P2;®T) has no polynomially-sized renH[V, 3] representation.
The point is that «,, has a polynomially-sized P I representation (consisting in 4n
clauses: —x; V —Y; V =z, —x; V Y V 2, ; V —Y; V 2, x; V Y; V =z for each
1 €1,...,n), and a polynomially-sized OBDD. representation for every ordering
< which is such that x;, y;, z; (+ € 1,...,n) are successive elements. Indeed,
foreach i € 1,...,n, one can generate in constant time an OBDD_ representation
equivalent to each z;By; ®2;® T and then, starting with the OBDD_ representation
of 1 ® y1 ® 21 & T, in an iterative way, replace the T sink of the current OBDD -
representation by the root of the next OBDD. representation.

Furthermore, in the proof of Proposition 11, we proved that the formula o, =
Ai_;(mx; V —y;) (for any n) does not have a polynomial-size AFF[V] represen-
tation. The point is that a, is a PI formula, and it also has a polynomially-sized
OBDD. representation for every ordering < which is such thatz;, y; . € 1,...,n)
are successive elements. Indeed, for each 7 € 1,...,n, one can generate in con-

10A prime implicant y of a formula « is essential iff the disjunction of all prime implicants of
a except v (up to logical equivalence) is not equivalent to a.
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\ AFF[V] \ renH[V, 3] \ K/H[V, 3] \ HORN[V, 3] \ KROM[V] \

CNF L, 8V Es | Lo, 1 P51 L, 1 Fs L, 8 Zsl | Lo, 1 P
PI LW Zsl | L5, 1 251 Lss 1 Zs 1 L8 Zsh | Los1 251
DNNFT [ | 171 1751 [ | 171
d-DNNF 121 121 [ | 121 [ |
DNF gs’ ZS $87 ZS $89 ZS $S7 ZS gSs ZS
IP gs’ ZS %s, ZS ﬁs» ZS $S7 28 ﬁSa ZS
OBDD. | Ls, 8 Zs1 | Lo Zs1 | Lo Zs1 | L8 Zs1 | L5 1 %510

Table 13: Comparing w.r.t. succinctness the full disjunctive closures of KROM, HORN, K/H, renH,
and AFF, with other classes of propositional representations.

stant time an OBDD . representation equivalent to each —z; V —y; and then, starting
with the OBDD. representation of —x; V —yj, in an iterative way, replace the T
sink of the current OBDD. representation by the root of the next OBDD . represen-
tation.

Given that PT >, CNF, OBDD. >, d-DNNF, OBDD. >, DNNFy, and the
succinctness relationships given in Proposition 11, by transitivity of <;, we get
the results given in Table 13.

Table 14: As to DNNF, it is enough to show that the family of circular bit shift
functions cbs,,, have polynomially-sized representations in KROM[V], HORN[V],
K/H[V], and AFF[V]. Indeed, it has been proven that such functions do not have
polynomially-sized SDNNF representations, where SDNNF is the union of DNNF'¢
for all vtrees 1" [20].

For any positive integer m, consider the following Boolean function over

2m+1 1 m variables cbs,, (2o, . .., Tom_1,Yo, - -, Yam 1,10, - - -, im_1) Which is the
semantics of the formula «,,, =
bo,-.bm—1€{0,1}
m— 2m—1
b;
/\ 2 A /\ Tj <= Y(i+num(bo,....bm 1))mod2m)
: ,] =0

whose size is linear in the number of variables of cbs,,,. In this formula, z 7 denotes
the literal ¢; when b; = 0 and the literal —¢; when b; = 1; num is the mapping
from {0,1}™ to the set of natural numbers which gives the integer represented
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by the binary string by . .
how the bits of the binary string ¥ . .

b1

Thus, the variables ig, . ..

, tm—1 make precise
.yom_1 must be (circularly) shifted, and

cbsm(xoy ..oy Tam_1, Yo, - - -y Yam_1,70, - -, im—1) = 1 exactly when the variables
Xo, . .., xom_1 and the shifted variables v, . .., yom_; are pairwise equal.
] | AFF[V] [ renH[V,d] [ K/H[V,T] | HORN[V,T] | KROM[V] |
CNF Ls, Zs Lss Zs Lss Zs Lss Zs Lss Zs
PI Lss Zs Lss Zs Lss Zs Lss Zs Lss Zs
DNNF'r 1 gs L, zs 1 zs L, zs 1 fs 1, zs 1 gs L, zs 1 gs L, \Lés
d-DNNF | RZIL 25 | WL 2 | VT 2 | WVEIL 2 [ VLT 2
DNF $S$ 28 £87 ZS ﬁs, 25 gS’ ZS $S$ 28
IP ﬁS’ ZS gS’ 25 $S7 25 gS’ ZS ﬁS’ ZS
OBDD< ﬁS’ zs gs’ zs $S7 zS gs’ 28 ﬁs’ zs

Table 14: Comparing w.r.t. succinctness the full disjunctive closures of KROM, HORN, K/H, renH,
and AFF, with other classes of propositional representations.

For each by, ..., by—1 € {0, 1}, the formula By, 4, ,
m— 2m 1
b;
/\ i A /\ Tj < Y(j+num(bo,....bm—1))mod2m
j=0 7=0

is equivalent to the KROM formula v, . 5, , =

2m—1

/\ /\ =L V Y(j+num(Bo,....bm 1)) mod2m )

2m—1
A (@5 V =Y s mam(bo, 1) ymodzm)-
7=0

Clearly enough, 7, 5, , also is a HORN formula, hence it is a K/H formula
and a renH formula. Similarly, 3, ;. , is also equivalent to the AFF formula
0bg, . ..

) bmfl =

/\ lit(i;, b;

2m—1

/\ X S Y(i+num(bo,....bm—1))mod2™ T
7=0
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where [lit(i;,b;) = i; when b; = 0 and lit(i;,b;) = i; & T when b; = 1. Both
Voorobm_r A0d Oy, p . can be computed in time linear in the size of 3, 4, |,
hence linear in the number of variables of cbs,,,.

As a consequence, Vbo,...,bm,le{m} Ybo,....bm_1 18 @ KROM[V] (and a HORN[V], a
K/H[V], a renH[V]) formula equivalent to «,,,, and Vbo o bm1€{0,1} Obo,.. b is

3]

a AFF[V] formula equivalent to «,,,. The fact that the size of any of

\/ Vb0, bm—1

bOv--'ybm—le{Ovl}

Vo Gt

b0:~'~7bm—1€{071}

m—1

and

is linear in the number of variables of cbs,, completes the proof.

As to d-DNNF, the result comes easily from the fact that d-DNNF is not at
least as succinct as DNF, unless the polynomial hierarchy collapses [1], plus the
fact that DNF is polynomially translatable into the disjunction closure and into the
full disjunctive closure of each of KROM, HORN, K/H, and renH.

We finally get the results given in Table 14.
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