
Knowledge Compilation for Model Counting: Affine Decision Trees∗

Frédéric Koriche1, Jean-Marie Lagniez2, Pierre Marquis1, Samuel Thomas1

1CRIL-CNRS, Université d’Artois, Lens, France
2FMV, Johannes Kepler University, Linz, Austria

{koriche,marquis,thomas}@cril.fr Jean-Marie.Lagniez@jku.at

Abstract
Counting the models of a propositional formula
is a key issue for a number of AI problems, but
few propositional languages offer the possibility to
count models efficiently. In order to fill the gap, we
introduce the language EADT of (extended) affine
decision trees. An extended affine decision tree
simply is a tree with affine decision nodes and some
specific decomposable conjunction or disjunction
nodes. Unlike standard decision trees, the deci-
sion nodes of an EADT formula are not labeled by
variables but by affine clauses. We study EADT,
and several subsets of it along the lines of the
knowledge compilation map. We also describe a
CNF-to-EADT compiler and present some experi-
mental results. Those results show that the EADT
compilation-based approach is competitive with
(and in some cases is able to outperform) the model
counter Cachet and the d-DNNF compilation-
based approach to model counting.

1 Introduction
Model counting is a key issue in a number of AI prob-
lems, including inference in Bayesian networks and contin-
gency planning [Littman et al., 2001; Bacchus et al., 2003;
Sang et al., 2005; Darwiche, 2009]. However, this problem
is computationally hard (#P-complete) [Valiant, 1979]. Ac-
cordingly, few propositional languages offer the possibility to
count models exactly in an efficient way [Roth, 1996].

The knowledge compilation (KC) map, introduced by Dar-
wiche and Marquis [2002] and enriched by several authors
(see among others [Wachter and Haenni, 2006; Subbarayan et
al., 2007; Mateescu et al., 2008; Fargier and Marquis, 2008;
Darwiche, 2011; Marquis, 2011; Bordeaux et al., 2012]) is
a multi criteria evaluation of languages, where languages are
compared according to the queries and the transformations
they support in polynomial time, as well as their relative suc-
cinctness (i.e., their ability to represent information using lit-
tle space).

∗This work is partially supported by FWF, NFN Grant S11408-
N23 (RiSE), and by the project BR4CP ANR-11-BS02-008 of the
French National Agency for Research.

Among the languages which have been studied and clas-
sified according to the KC map, only the language d-DNNF
of formulae in deterministic decomposable negation normal
form [Darwiche, 2001], together with is subsets OBDD<
[Bryant, 1986], FBDD [Gergov and Meinel, 1994], and SDD
[Darwiche, 2011], satisfy the CT query (model counting).
Yet, another interesting language which satisfies CT is AFF,
the set of all affine formulae [Schaefer, 1978], defined as fi-
nite conjunctions of affine clauses (aka XOR-clauses). Un-
fortunately, AFF is not a complete language, because some
propositional formulae (e.g. the clause x ∨ y) cannot be rep-
resented into conjunctions of affine clauses.

By coupling ideas from affine formulae and decision trees,
this paper introduces a new family of propositional languages
that are complete and satisfy CT. The blueprint of our fam-
ily is the class EADT of extended affine decision trees. In
essence, an extended affine decision tree is a tree with deci-
sion nodes and some specific decomposable conjunction or
disjunction nodes. Unlike usual decision trees, the decision
nodes in an EADT are labeled by affine clauses instead of vari-
ables. Our family covers several subsets of EADT, including
ADT (the set of affine decision trees where conjunction or dis-
junction nodes are prohibited), EDT (the set of extended de-
cision trees where decomposable conjunction or disjunction
nodes are allowed but decision nodes are mainly restricted to
standard ones), and DT, the intersection of ADT and EDT.

Following the lines of the KC map, we prove that ADT
and its subclass DT satisfy all queries and transformations of-
fered by ordered binary decision diagrams (OBDD<). Analo-
gously, EADT and its subclass EDT satisfy all queries offered
by d-DNNF and more transformations (¬C is not satisfied by
d-DNNF). Importantly, we also show that none of OBDD<,
CNF, and DNF is at least as succinct as any of ADT or EADT,
and that EADT is strictly more succinct than ADT.

Finally, we describe a CNF-to-EADT compiler (which can
be downsized to a compiler targeting ADT, EDT or DT). We
used this program to compile a number of benchmarks from
different domains. This empirical evaluation aimed at ad-
dressing two practical issues: (1) how challenging is an EADT
compilation-based approach to model counting, compared to
a direct, uncompiled method using a state-of-the-art model
counter? (2) how does the EADT compilation-based approach
perform compared to a d-DNNF compilation-based method?
Our experimental results show that the EADT compilation-

based approach is competitive with both methods and, in
some cases, it really outperforms them.

The rest of the paper is organized as follows. After in-
troducing some background in Section 2, EADT and its sub-
sets are defined and examined along the lines of the KC map
in Section 3. In Section 4, our compiler is described and,
in Section 5, some empirical results are presented and dis-
cussed. Finally, Section 6 concludes the paper. The run-
time code of our compiler can be downloaded at http:
//www.cril.fr/ADT/

2 Preliminaries
We assume the reader familiar with propositional logic (in-
cluding the notions of model, consistency, validity, entail-
ment, and equivalence). All languages examined in this study
are defined over a finite set PS of Boolean variables, and the
constants > (true) and ⊥ (false).

Affine Formulae. Let PS be a denumerable set of proposi-
tional variables. A literal (over PS) is an element x ∈ PS
(a positive literal) or a negated one ¬x (a negative literal),
or a Boolean constant > (true) or ⊥ (false). An affine clause
(aka XOR-clause) δ is a finite XOR-disjunction of literals (the
XOR connective is denoted by ⊕). var(δ) is the set of vari-
ables occurring in δ. δ is unary when it contains precisely one
literal. Obviously enough, each affine clause can be rewritten
in linear time as a simplified affine clause, i.e., a finite XOR-
disjunction of positive literals occurring once in the formula,
plus possibly one occurrence of > (just take advantage of the
fact that ⊕ is associative and commutative, and of the equiv-
alences ¬x ≡ x ⊕ >, x ⊕ x ≡ ⊥, x ⊕ ⊥ ≡ x, viewed as
rewrite rules, left-to-right oriented). For instance, the affine
clause ¬x ⊕ x ⊕ ¬y ⊕ ¬z can be turned in linear time into
the equivalent simplified affine clause y ⊕ z ⊕ >. An affine
formula is a finite conjunction of affine clauses.

Knowledge Compilation. For space reasons, we assume
the reader has a basic familiarity with the languages CNF,
DNF, OBDD<, SDD, BDD, FBDD, d-DNNFT, d-DNNF, and
DAG-NNF, which are considered in the following (see [Dar-
wiche and Marquis, 2002; Pipatsrisawat and Darwiche, 2008;
Darwiche, 2011] for formal definitions). The basic queries
considered in the KC map include tests for consistency CO,
validity VA, implicates (clausal entailment) CE, implicants
IM, equivalence EQ, sentential entailment SE, model count-
ing CT, and model enumeration ME. The basic transforma-
tions are conditioning (CD), (possibly bounded) closures un-
der the connectives (∧C, ∧BC, ∨C, ∨BC, ¬C), and forget-
ting (FO, SFO).

Finally, let L1 and L2 be two propositional languages.

• L1 is at least as succinct as L2, denoted L1 ≤s L2,
iff there exists a polynomial p such that for every for-
mula φ ∈ L2, there exists an equivalent formula ψ ∈ L1

where |ψ| ≤ p(|φ|).

• L1 is polynomially translatable into L2, noted L1 ≥p
L2, iff there exists a polynomial-time algorithm f such
that for every φ ∈ L1, f(φ) ∈ L2 and f(φ) ≡ φ.

<s is the asymmetric part of ≤s, i.e., L1 <s L2 iff L1 ≤s
L2 and L2 6≤s L1. When L1 ≥p L2 holds, every query which
is supported in polynomial time in L2 also is supported in
polynomial time in L1; conversely, every query which is not
supported in polynomial time in L1 unless P = NP is not
supported in polynomial time in L2, unless P = NP.

3 The Affine Family
All propositional languages in our family are subsets of the
very general language of affine decision networks:

Definition 1 ADN is the set of all affine decision networks,
defined as single-rooted finite DAGs where leaves are la-
beled by a Boolean constant (> or ⊥), and internal nodes
are ∧ nodes or ∨ nodes (with arbitrarily many children) or
affine decision nodes, i.e., binary nodes of the form N =
〈δ,N−, N+〉 where δ is the affine clause labeling N and N−
(resp. N+) is the left (resp. right) child of N .

The size |∆| of an ADN formula ∆ is the sum of number of
arcs in it, plus the cumulated size of the affine clauses used as
labels in it. For every node N in an ADN formula ∆, Var(N)
is defined inductively as follows:

• if N is a leaf node, then Var(N) = ∅;

• if N is an affine decision node N = 〈δ,N−, N+〉, then
Var(N) = var(δ) ∪Var(N−) ∪Var(N+);

• ifN is a∧ node (resp. ∨ node) with childrenN1,. . ., Nk,
then Var(N) =

⋃k
i=1 Var(Ni).

Clearly, Var(∆) = Var(R∆) (where R∆ is the root of ∆)
can be computed in time linear in the size of ∆. Every ADN
formula ∆ is interpreted as a propositional formula I(∆) over
Var(∆), where I(∆) = I(R∆) is defined inductively as:

• if N is a leaf node labeled by > (resp. ⊥), then I(N) =
> (resp. ⊥);

• if N is an affine decision node N = 〈δ,N−, N+〉, then
I(N) = ((δ ⊕>) ∧ I(N−)) ∨ (δ ∧ I(N+));

• ifN is a∧ node (resp. ∨ node) with childrenN1,. . . ,Nk,
then I(N) =

∧k
i=1 I(Ni) (resp.

∨k
i=1 I(Ni)).

Finally, ‖∆‖ represents the number of models of the ADN
formula ∆ over Var(∆).

The DAG-NNF language considered in [Darwiche and
Marquis, 2002] is polynomially translatable into a subset of
ADN, where decision nodes have leaf nodes as children. In-
deed, every leaf node labeled by a positive literal x (resp.
negative literal ¬x) in a DAG-NNF formula is equivalent to
the affine decision node N labeled by δ = x and such that
N− = ⊥ (resp. = >) and N+ = > (resp. = ⊥). Thus, ADN
is a highly succinct yet intractable representation language;
especially, it does not satisfy the CT query unless P = NP.
To this point, we need to focus on tractable subsets of ADN.

Let us start with the EADT language, a class of tree-
structured formulae defined in term of affine decomposability.
Formally, a ∧ (resp. ∨) node N with children N1, . . . , Nk in
an ADN ∆ is said to be affine decomposable if and only if:

(1) for any i, j ∈ 1,. . . , k, if i 6= j, then Var(Ni) ∩
Var(Nj) = ∅, and

http://www.cril.fr/ADT/
http://www.cril.fr/ADT/

x1 ⊕ x2 ⊕ ¬x3

∧ x2 ⊕ x4

x1 ⊕ ¬x4 x5 ⊥ x1 ⊕ x3 ⊕ ¬x5

> ⊥ ⊥ > > ⊥

Figure 1: An EADT formula. Every dotted (resp. plain) arc
links its source N to N− (resp. N+). The formula rooted at
the node labeled by x2 ⊕ x4 is an ADT formula.

(2) for every affine decision node N ′ of ∆ which is a
parent node of N and which is labelled by the affine
clause δN ′ , at most one child Ni of N is such that
var(δN ′) ∩Var(Ni) 6= ∅.

If only the first condition holds, then the node N is said to be
(classically) decomposable.

Definition 2 EADT is the set of all extended affine decision
trees, defined as finite trees where leaves are labeled by a
Boolean constant (> or ⊥), and internal nodes are affine de-
cision nodes, or affine decomposable ∧ nodes, or affine de-
composable ∨ nodes.

An example of EADT formula is given at Figure 1. Some
relevant subclasses of EADT are defined as follows:

Definition 3
• ADT is the set of all affine decision trees, i.e., the sub-

set of EADT consisting of finite trees where leaves are
labeled by a Boolean constant (> or ⊥), and internal
nodes are affine decision nodes.

• EDT is the set of all extended decision trees, i.e., the
subset of EADT where affine decision nodes are labeled
by unary affine clauses.1

• DT, the set of all decision trees, is the intersection of
ADT and EDT.

Based on this family, it is easy to check that the language
TE of all terms and the language CL of all clauses are linearly
translatable into DT, and hence, into each of ADT, EDT, and
EADT. Furthermore, the language AFF is also polynomially
translatable into ADT (hence into its superset EADT).

In contrast to TE, CL, and AFF, the class DT and its su-
persets ADT, EDT, and EADT are complete propositional lan-
guages. The completeness property also holds for ODT<,
which is the subset of DT consisting of formulae ∆ in which
every path from the root of ∆ to a leaf respects the given, to-
tal, strict ordering < (i.e., the variables labeling the decision

1The affine decomposability condition can be given up for EDT
formulae since every EDT formula can be translated in linear time
into an equivalent EDT formula which is read-once (i.e., for every
path from the root of the tree to a leaf, the list of all variables labeling
the decision nodes of the path contains at most one occurrence of
each variable).

nodes in the path are ordered in a way which is compatible
with <). Clearly, ODT< also is a subset of OBDD< (to be
more precise, ODT< is the intersection of DT and OBDD<),
and both CL and TE are polynomially translatable to it.

We are now in position to explain how any EADT formula
∆ can be translated in linear time into a tree T (∆) where
internal nodes are decomposable ∧ nodes or decomposable
∨ nodes or deterministic binary ∨ nodes, and the leaves are
labeled with affine formulae. The translation T consists in
rewriting ∆ by parsing it in a top-down way, and collecting
sets of affine clauses (those sets are the values of an inherited
attribute a defined for each node N of ∆) along the paths of
∆ during the translation. T proceeds recursively as follows
starting with N = R∆ and a(R∆) = ∅:
• if N = 〈δ,N−, N+〉, then T (N) = T (N−) ∨ T (N+),
a(N−) = a(N) ∪ {δ ⊕>}, and a(N+) = a(N) ∪ {δ};
• if N =

∧k
i=1Ni, then T (N) =

∧k
i=1 T (Ni), and for

every i ∈ 1, . . . , k, a(Ni) = {δ ∈ a(N) | var(δ) ∩
Var(Ni) 6= ∅};

• if N =
∨k
i=1Ni, then T (N) =

∨k
i=1 T (Ni), and for

every i ∈ 1, . . . , k, a(Ni) = {δ ∈ a(N) | var(δ) ∩
Var(Ni) 6= ∅};

• if N = >, then T (N) =
∧
δ∈a(N) δ;

• if N = ⊥, then T (N) = ⊥.
By construction, the translation T consists in replacing ev-

ery affine decision node by a deterministic binary ∨ node,
every affine decomposable ∧ (resp. ∨) node by a (classically)
decomposable ∧ (resp. ∨) node. Thus, when ∆ is an ADT
formula, T (∆) simply is a deterministic disjunction of affine
formulae, and when ∆ is a DT formula, T (∆) simply is a
deterministic DNF formula.

With this translation in hand, it is easy to show that EADT
satisfies CT. The proof is by structural induction on φ =
T (∆). First, ‖φ‖ can be computed in polynomial time when
φ is an affine formula, since φ can be viewed as a finite sys-
tem of linear equations modulo 2. Indeed, φ can be turned in
polynomial time into its equivalent reduced row echelon form
φr, and when Var(φr) contains n variables and φr contains
k affine clauses, ‖φ‖ is equal to 2n−k. This solves the base
case. As to the inductive step, it is enough to check that:

• if φ =
∧k
i=1 φi (where

∧
is a decomposable ∧ node),

‖φ‖ =
k∏
i=1

‖φi‖

• if φ =
∨k
i=1 φi (where

∨
is a decomposable ∨ node),

‖φ‖ = 2|Var(φ)| −
k∏
i=1

(2|Var(φi)| − ‖φi‖)

• if φ = φ1 ∨φ2 (where ∨ is a deterministic ∨ node), then

‖φ‖=‖φ1‖×2|Var(φ2)\Var(φ1)|+‖φ2‖×2|Var(φ1)\Var(φ2)|

More generally, our results concerning queries and trans-
formations of the KC map are summarized in Proposition 1.
Languages d-DNNF and OBDD< (which are not subsets of
EADT) are reported for the comparison matter.

L CO VA CE IM EQ SE CT ME
EADT

√ √ √ √
? ◦

√ √

EDT
√ √ √ √

? ◦
√ √

ADT
√ √ √ √ √ √ √ √

DT
√ √ √ √ √ √ √ √

ODT<
√ √ √ √ √ √ √ √

d-DNNF
√ √ √ √

? ◦
√ √

OBDD<
√ √ √ √ √ √ √ √

Table 1: Queries.
√

means “satisfies” and ◦means “does not
satisfy unless P = NP.”

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C
EADT

√
◦ ◦ ◦ ◦ ◦ ◦

√

EDT
√

◦ ◦ ◦ ◦ ◦ ◦
√

ADT
√

◦
√

◦
√

◦
√ √

DT
√

◦
√

◦
√

◦
√ √

ODT<
√

◦
√

◦
√

◦
√ √

d-DNNF
√

◦ ◦ ◦ ◦ ◦ ◦ ?
OBDD<

√
◦

√
◦

√
◦

√ √

Table 2: Transformations.
√

means “satisfies,” while ◦
means “does not satisfy unless P = NP”.

Proposition 1 The results given in Tables 1 and 2 hold.

In a nutshell, ADT and its subclass DT are equivalent to
OBDD< with respect to queries and transformations. Simi-
larly, EADT and its subclass EDT are essentially equivalent to
d-DNNF with respect to queries and transformations. In par-
ticular, EDT, EADT, and d-DNNF do not satisfy SE unless
P = NP, and it is unknown whether they satisfy EQ. It is
also unknown whether d-DNNF satisfies ¬C, but this trans-
formation can be done in linear time for both EADT and EDT.

The inclusion graph of the different languages is given in
Figure 2. In light of this inclusion graph and the fact that DT
(resp. EDT) does not satisfy more queries or transformations
than ADT (resp. EADT), it follows that DT (resp. EDT) cannot
prove a better choice than ADT (resp. EADT) from the KC
point of view. This is why we focus on ADT and EADT in the
following. For these languages, we obtained the following
succinctness results:

Proposition 2 CNF 6≤s ADT, DNF 6≤s ADT, OBDD< 6≤s ADT,
d-DNNFT 6≤s ADT, and EADT <s ADT.

Based on these results, it turns out that OBDD< does not
dominate ADT from the KC point of view (i.e., it does not
offer any query/transformation not supported by ADT, and is
not strictly more succinct than ADT). This, together with the
fact that ADT ⊆ EADT implies that OBDD< does not domi-
nate EADT. Our succinctness results also reveal that none of
the ”flat” languages CNF and DNF is at least as succinct as
any of ADT or EADT. Although we ignore how d-DNNF and
EADT compare w.r.t. succinctness, we know that the subclass
d-DNNFT does not dominate any of ADT or EADT.

4 A CNF-to-EADT Compiler
A natural approach for compiling an arbitrary propositional
formula into an EADT formula is to exploit a generalized form
of Shannon expansion. Given two formulae ∆ and δ, and a
variable x, we denote by ∆ |x←δ the formula obtained by

EADT

ADTEDT

DT

ODT<

OBDD<

d-DNNFT

d-DNNF

Figure 2: Inclusion graph. L1 → L2 indicates that L1 ⊆ L2.

replacing every occurrence of x in ∆ by δ. With this notation
in hand, the generalized Shannon expansion states that for
every propositional formulae ∆ and δ and every variable x,
we have:

∆ ≡ ((x⇔ ¬δ) ∧∆ |x←¬δ) ∨ ((x⇔ δ) ∧∆ |x←δ)

Observe that the standard expansion introduced by Shan-
non [1949] is recovered by considering δ = >. The validity
of the generalized expansion comes from the fact that ∆ is
equivalent to ((x⇔ ¬δ) ∧∆) ∨ ((x⇔ δ) ∧∆), and the fact
that, for every propositional formula δ (or its negation), the
expression (x⇔ δ) ∧∆ is equivalent to (x⇔ δ) ∧∆ |x←δ .

In our setting, ∆ is an ECNF formula and δ is an affine
clause. ECNF, the language of extended CNF, is the set of all
finite conjunctions of extended clauses, where an extended
clause is a finite disjunction of affine clauses. Thus, for in-
stance, x1∨ (x2⊕x3⊕>)∨ (x1⊕x3) is an extended clause.
Clearly, CNF is linearly translatable into ECNF Now, since
x ⇔ ¬δ is equivalent to x ⊕ δ, and x ⇔ δ is equivalent to
x⊕δ⊕>, the generalized Shannon expansion can be restated
as the following branching rule:

∆ ≡ ((x⊕ δ) ∧∆ |x←δ⊕>) ∨ ((x⊕ δ ⊕>) ∧∆ |x←δ)

The Compilation Algorithm. Based on previous considera-
tions, Algorithm 1 provides the pseudo-code for the compiler
eadt, which takes as input an ECNF formula ∆, and returns as
output an EADT formula equivalent to ∆. The first two lines
deal with the specific cases where ∆ is valid or unsatisfiable.
In both cases, the corresponding leaf is returned.

We note in passing that the unsatisfiability problem (resp.
the validity problem) for ECNF has the same complexity as
for its subset CNF, i.e., it is coNP-complete (resp. it is in
P). This is obvious for the unsatisfiability problem. For the
validity problem, an ECNF formula is valid iff every extended
clause in it is valid, and an extended clause δ1∨. . .∨δk (where
each δi, i ∈ 1, . . . , k is an affine clause) is valid iff the affine
formula (δ1⊕>)∧ . . .∧ (δk⊕>) is contradictory, which can
be tested in polynomial time.

In the remaining case, ∆ is split into a decomposable con-
junction of components ∆1, · · · ,∆k (Line 3). These compo-
nents are recursively compiled into EADT formulae and con-
joined as a ∧ node using the aNode function. Note that de-
composition takes precedence over branching: only when ∆
consists of a single component, the compiler chooses an affine
clause x⊕ δ for which all variables occur in ∆ (Line 5), and
then branches on this clause using the generalized Shannon

Algorithm 1: eadt(∆)
input : an ECNF formula ∆
output: an EADT formula equivalent to ∆

1 if ∆ ≡ > then return leaf(>)
2 if ∆ ≡ ⊥ then return leaf(⊥)
3 let ∆1, · · · ,∆k be the connected components of ∆
4 if k > 1 then return aNode(eadt(∆1), · · · , eadt(∆k))
5 choose a simplified affine clause x⊕ δ such that

var(x⊕ δ) ⊆ Var(∆)

6 return dNode(x⊕ δ, eadt(∆ |x←δ⊕>), eadt(∆ |x←δ))

expansion (Line 6). Here, the dNode function returns a deci-
sion node labeled with the first argument, having the second
argument as left child, and having the third argument as right
child. When Line 3 is omitted, the CNF-to-EADT compiler
boils down to a CNF-to-ADT compiler.

Algorithm 1 is guaranteed to terminate. Indeed, by def-
inition of a simplified affine clause, δ in x ⊕ δ is an affine
clause which does not contain x. Since none of ∆ |x←δ⊕>
and ∆ |x←δ contains x, the steps 5 and 6 can be applied only
a finite number of times. Furthermore, the EADT formula
returned by the algorithm is guaranteed to satisfy the affine
decomposition rule. This property can be proved by induc-
tion on the structure of the resulting tree: the only non-trivial
case is when the tree consists of a ∧ node with parents N
and children N1, · · · , Nk each Ni formed by calling eadt on
the connected component ∆i of the formula ∆. Since each
parent clause in N is of the form x ⊕ δ, where x is excluded
from δ, and since the components do not share any variable,
it follows that x⊕ δ overlaps with at most one component in
∆1, · · · ,∆k. This, together with the fact that the generalized
Shannon expansion is valid, establishes the correctness of the
algorithm.

Implementation. Algorithm 1 was implemented on top of
the state-of-the-art SAT solver MiniSAT [Eén and Sörensson,
2003]. We extended MiniSAT to deal with ECNF formu-
lae. The heuristic used at Line 5 for choosing affine clauses
of the form x ⊕ δ is based on the concept of variable ac-
tivity (VSIDS, Variable State Independent Decaying Sum)
[Moskewicz et al., 2001]. Specifically, for each extended
clause C of ∆, the score of C is computed as the sum of
the scores of each affine clause in it, where the score of an
affine clause is the the sum of the VSIDS scores of its vari-
ables. Based on this metric, an extended clause C of ∆ of
maximal score is selected, and the variables of C are sorted
by decreasing VSIDS score; the selected variable x is the first
variable in the resulting list, and the affine clause δ is formed
by the next k − 1 variables in the list. Note that selecting
all the variables of x ⊕ δ from the same extended clause C
of ∆ prevents us from generating connections between vari-
ables which are not already connected in the constraint graph
of ∆. We also took advantage of a simple filtering method,
which consists in finding implied affine clauses, used only at
the first top nodes of the search tree. In our experiments, we

bounded the size of affine clauses to k = 2, and used the
filtering method up to depth 5.

5 Experiments
Setup. The empirical protocol we followed is very close to
the one conducted in [Schrag, 1996] (and other papers). We
have considered a number of CNF benchmark instances from
different domains provided by the SAT LIBrary (www.cs.
ubc.ca/˜hoos/SATLIB/index-ubc.html). For
each CNF instance ∆, we generated 1000 queries; each query
is a 3-literal term γ the 3 variables of which are picked up at
random from the set of variables of ∆, following a uniform
distribution; the sign of each literal is also selected at random
with probability 1

2 . The objective is to count the number of
models of the conditioned formula ∆ | γ for all queries γ.
Our experiments have been conducted on a Quad-core Intel
XEON X5550 with 32Gb of memory. A time-out of 3 hours
has been considered for the off-line compilation phase, and
a time-out of 3 hours per query has been established for ad-
dressing each of the 1000 queries during the on-line phase.
Based on this setup, three approaches have been examined:
• A direct, uncompiled approach: we considered

a state-of-the-art model counter, namely Cachet
(www.cs.rochester.edu/˜kautz/Cachet/
index.htm) [Sang et al., 2004]. Here, #FCachet is
the number of elements of FCachet, the set of “feasible”
queries, i.e., the queries in the sample for which Cachet
has been able to terminate before the time-out (or a
segmentation fault). QCachet gives the mean time needed
to address the feasible queries, i.e.,

QCachet =
1

#F Cachet

∑
γ∈FCachet

QCachet(∆|γ)

where QCachet(∆|γ) is the runtime of Cachet for ∆|γ.
• Two compilation-based approaches: d-DNNF and EADT

have been targeted. We took advantage of the c2d com-
piler (reasoning.cs.ucla.edu/c2d/) to gener-
ate (smooth) d-DNNF compilations,2 and our own com-
piler to compute EADT compiled forms. For each L
among d-DNNF and EADT, ∆ has been first turned into
a compiled form ∆∗ ∈ L during an off-line phase. The
compilation time CL needed to compute ∆∗ and the
mean query-answering time QL have been measured.
We also computed for each approach two ratios:

αL =
QL

QCachet

and βL =
⌈

CL

QCachet −QL

⌉
Intuitively, αL indicates how much on-line time im-
provement is got from compilation: the lower the better.
The quantity βL captures the number of queries needed
to amortize compilation time. Clearly, the compilation-
based approach targeting L is useful only if αL < 1. By
convention, βL = +∞ when αL ≥ 1.

2Primarily, we also planned to use the d-DNNF compiler
Dsharp [Muise et al., 2012] but unfortunately, we encountered the
same problems as mentioned in [Voronov, 2013] to run it, which
prevented us from doing it.

www.cs.ubc.ca/~hoos/SATLIB/index-ubc.html
www.cs.ubc.ca/~hoos/SATLIB/index-ubc.html
www.cs.rochester.edu/~kautz/Cachet/index.htm
www.cs.rochester.edu/~kautz/Cachet/index.htm
reasoning.cs.ucla.edu/c2d/

Instance Cachet c2d eadt

name #var #cla #F Q C Q α β C Q α β
ais6 61 581 1000 0.531 1.23 4 E−5 8 E−7 2 0.01 < 1 E−7 < 2 E−7 1
ais8 113 1520 866 0.540 3.04 2 E−4 3 E−4 5 0.24 1 E−5 2 E−5 1
ais10 181 3151 325 0.578 12.3 1 E−3 2 E−3 21 7.69 1 E−4 2 E−4 13
ais12 265 5666 80 0.573 - - - - 410 1 E−3 2 E−3 717
bmc-ibm-2 2810 11683 1000 0.569 - - - - 0.37 2 E−5 4 E−5 1
bmc-ibm-3 14930 72106 999 13.04 412 0.93 7 E−2 34 180 6 E−3 5 E−4 13
bmc-ibm-4 28161 139716 1000 5.412 1128 9.09 1.679 +∞ - - - -
bw large.a 459 4675 1000 0.537 15.05 2 E−5 4 E−5 28 < 1 E−4 < 1 E−7 < 2 E−7 1
bw large.b 1087 13772 1000 0.612 48.88 5 E−5 8 E−5 79 0.01 < 1 E−7 < 2 E−7 1
bw large.c 3016 50457 996 2.452 283.3 1 E−4 6 E−5 115 0.16 1 E−5 4 E−6 1
bw large.d 6325 131973 896 31.44 - - - - 1.9 2 E−5 6 E−7 1
(bw) medium 116 953 1000 0.526 2.39 2 E−5 4 E−5 4 < 1 E−4 < 1 E−7 < 2 E−7 1
(bw) huge 459 7054 1000 0.543 15.11 2 E−5 4 E−5 27 < 1 E−4 < 1 E−7 < 2 E−7 1
hanoi4 718 4934 505 0.557 559.6 3 E−5 5 E−5 1004 0.13 < 1 E−7 < 2 E−7 1
hanoi5 1931 14468 440 0.619 2240 8 E−5 1 E−4 3621 1.1 1 E−5 2 E−5 1
logistics.a 828 6718 993 1.266 - - - - 6757 2.12 1.676 +∞
ssa7552-038 1501 3575 1000 0.634 20.99 0.042 0.065 35 - - - -

Table 3: Some experimental results

Results. Table 3 presents the obtained results. Each line
corresponds to a CNF instance ∆ identified by the leftmost
column. The first two columns give respectively the number
#var of variables of ∆ and the number #cla of clauses of
∆, and the remaining columns give the measured values. The
reported computation times are in seconds.

We can observe that both compilation-based approaches
typically prove valuable whenever the off-line compilation
phase terminates. On the one hand, for each compilation-
based approach L, all the 1000 queries have been “feasible”
when the compilation process terminated in due time. For this
reason, we did not report in the table the number #FL of fea-
sible queries. By contrast, the number of feasible queries for
the direct, uncompiled approach is sometimes significantly
lower than 1000, and the standard deviation of the on-line
query-answering time (not given in the table for space rea-
sons) for such queries is often significantly greater than the
corresponding deviations measured from compilation-based
approaches. On the other hand, the number of queries β to be
considered for balancing the compilation time is finite for all,
but two (one for d-DNNF and one for EADT), instances.

Furthermore, the experiments revealed that some instances
of significant size are compilable. When the compilation suc-
ceeds, β is typically small and, accordingly, on-line time sav-
ings of several orders of magnitude can be achieved. Espe-
cially, the optimal value 1 for the “break-even” point β has
been reached for many instances when the EADT language
was targeted. This means that in many cases the off-line time
spend to built the EADT compiled form is immediately bal-
anced by the first counting query. Stated otherwise, the eadt
compiler proves also competitive as a model counter.

Finally, our experiments show EADT compilation challeng-
ing with respect to d-DNNF compilation in many (but not all)
cases. When compilation succeeds in both cases, the number
of nodes in EADT and d-DNNF formulae are about the same
order, but the EADT formulae are slightly faster for process-
ing queries, due to their arborescent structure.

6 Conclusion
The propositional language EADT introduced in the paper ap-
pears as quite appealing for the representation purpose, when
CT is a key query. Especially, EADT offers the same queries
as d-DNNF, and more transformations (among those consid-
ered in the KC map). The subset ADT of EADT offers all the
queries and the same transformations as those satisfied by the
influential OBDD< language. Furthermore, OBDD< is not at
least as succinct as ADT, which shows ADT as a possible chal-
lenger to OBDD<. In practice, the EADT compilation-based
approach to model counting appears as competitive with the
model counter Cachet and the d-DNNF compilation-based
approach to model counting.

This work opens a number of perspectives for further re-
search. From the theoretical side, a natural extension of ADT
is the set of all single-rooted finite DAGs, where leaves are
labeled by a Boolean constant (> or ⊥), and internal nodes
are affine decision nodes. However, this language is not ap-
pealing as a target language for knowledge compilation, be-
cause it contains the language BDD of binary decision dia-
grams (alias branching programs) [Bryant, 1986] as a subset
and BDD does not offer any query from the KC map [Dar-
wiche and Marquis, 2002], unless P = NP. Thus, the problem
of finding interesting classes of affine decision graphs that are
tractable for model counting looks stimulating.

From the practical side, there are many ways to improve
our compiler. Notably, it would be interesting to take ad-
vantage of preprocessing techniques [Piette et al., 2008;
Järvisalo et al., 2012] in order to simplify the input CNF for-
mulae before compiling them. Furthermore, it could prove
useful to exploit Gaussian elimination for handling more effi-
ciently (see e.g. [Li, 2003; Chen, 2007; Soos et al., 2009])
instances that contain subproblems corresponding to affine
formulae, like those reported in [Crawford and Kearns, 1995;
Cannière, 2006]. Finally, considering other heuristics for se-
lecting the branching affine clauses (e.g. criteria based on the
mutual information metric) could also prove valuable.

References
[Bacchus et al., 2003] F. Bacchus, S. Dalmao, and T. Pitassi.

Algorithms and complexity results for #SAT and bayesian
inference. In Proc. of FOCS’03, pages 340–351, 2003.

[Bordeaux et al., 2012] L. Bordeaux, M. Janota, J. P. Mar-
ques Silva, and P. Marquis. On unit-refutation complete
formulae with existentially quantified variables. In Proc.
of KR’12, 2012.

[Bryant, 1986] R.E. Bryant. Graph-based algorithms for
Boolean function manipulation. IEEE Transactions on
Computers, C-35(8):677–692, 1986.

[Cannière, 2006] Ch. De Cannière. Trivium: A stream cipher
construction inspired by block cipher design principles. In
Proc. of ISC’06, pages 171–186, 2006.

[Chen, 2007] J. Chen. XORSAT: An efficient algorithm for
the dimacs 32-bit parity problem. CoRR, abs/cs/0703006,
2007.

[Crawford and Kearns, 1995] J.M. Crawford and M.J.
Kearns. The minimal disagreement parity problem as a
hard satisfiability problem. Technical report, 1995.

[Darwiche and Marquis, 2002] A. Darwiche and P. Marquis.
A knowledge compilation map. Journal of Artificial Intel-
ligence Research, 17:229–264, 2002.

[Darwiche, 2001] A. Darwiche. Decomposable negation
normal form. Journal of the ACM, 48(4):608–647, 2001.

[Darwiche, 2009] Adnan Darwiche. Modeling and Reason-
ing with Bayesian Networks. Cambridge University Press,
2009.

[Darwiche, 2011] A. Darwiche. SDD: A new canonical rep-
resentation of propositional knowledge bases. In Proc. of
IJCAI’11, pages 819–826, 2011.

[Eén and Sörensson, 2003] N. Eén and N. Sörensson. An ex-
tensible SAT-solver. In Proc. of SAT’03, pages 502–518.
2003.

[Fargier and Marquis, 2008] H. Fargier and P. Marquis. Ex-
tending the knowledge compilation map: Krom, Horn,
affine and beyond. In Proc. of AAAI’08, pages 442–447,
2008.

[Gergov and Meinel, 1994] J. Gergov and C. Meinel. Ef-
ficient analysis and manipulation of OBDDs can be ex-
tended to FBDDs. IEEE Transactions on Computers,
43(10):1197–1209, 1994.

[Järvisalo et al., 2012] M. Järvisalo, M. Heule, and A. Biere.
Inprocessing rules. In Proc. of IJCAR’12, pages 355–370,
2012.

[Li, 2003] C. Li. Equivalent literal propagation in the dll pro-
cedure. Discrete Applied Mathematics, 130(2):251–276,
2003.

[Littman et al., 2001] M. L. Littman, S. M. Majercik, and
T. Pitassi. Stochastic boolean satisfiability. Journal of Au-
tomated Reasoning, 27(3):251–296, 2001.

[Marquis, 2011] P. Marquis. Existential closures for knowl-
edge compilation. In Proc. of IJCAI’11, pages 996–1001,
2011.

[Mateescu et al., 2008] R. Mateescu, R. Dechter, and
R. Marinescu. AND/OR multi-valued decision diagrams
(AOMDDs) for graphical models. Journal of Artificial In-
telligence Research, 33:465–519, 2008.

[Moskewicz et al., 2001] M.W. Moskewicz, C.F. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering an
efficient SAT solver. In Proc. of DAC’01, pages 530–535,
2001.

[Muise et al., 2012] Ch.J. Muise, Sh.A. McIlraith, J.Ch.
Beck, and E.I. Hsu. Dsharp: Fast d-DNNF compilation
with sharpSAT. In Proc. of AI’12, pages 356–361, 2012.

[Piette et al., 2008] C. Piette, Y. Hamadi, and L. Saı̈s. Vivi-
fying propositional clausal formulae. In Proc. of ECAI’08,
pages 525–529, 2008.

[Pipatsrisawat and Darwiche, 2008] K. Pipatsrisawat and
A. Darwiche. New compilation languages based on
structured decomposability. In Proc. of AAAI’08, pages
517–522, 2008.

[Roth, 1996] D. Roth. On the hardness of approximate rea-
soning. Artificial Intelligence, 82(1–2):273–302, 1996.

[Sang et al., 2004] T. Sang, F. Bacchus, P. Beame, H.A.
Kautz, and T. Pitassi. Combining component caching and
clause learning for effective model counting. In Proc. of
SAT’04, 2004.

[Sang et al., 2005] T. Sang, P. Beame, and H. A. Kautz. Per-
forming Bayesian inference by weighted model counting.
In Proc. of AAAI’05, pages 475–482, 2005.

[Schaefer, 1978] Th. J. Schaefer. The complexity of satisfi-
ability problems. In Proc. of STOC’78, pages 216–226,
1978.

[Schrag, 1996] R. Schrag. Compilation for critically con-
strained knowledge bases. In Proc. of AAAI’96, pages
510–515, 1996.

[Shannon, 1949] C.E. Shannon. The synthesis of two–
terminal switching circuits. Bell System Technical Journal,
28(1):59–98, 1949.

[Soos et al., 2009] M. Soos, K. Nohl, and C. Castelluccia.
Extending SAT solvers to cryptographic problems. In
Proc. of SAT’09, pages 244–257, 2009.

[Subbarayan et al., 2007] S. Subbarayan, L. Bordeaux, and
Y. Hamadi. Knowledge compilation properties of tree-of-
BDDs. In Proc. of AAAI’07, pages 502–507, 2007.

[Valiant, 1979] L. G. Valiant. The complexity of computing
the permanent. Theoretical Computer Science, 8:189–201,
1979.

[Voronov, 2013] A. Voronov. On Formal Methods for Large-
Scale Product Configuration. Ph.D. thesis, Chalmers Uni-
versity, 2013.

[Wachter and Haenni, 2006] M. Wachter and R. Haenni.
Propositional DAGs: A new graph-based language for rep-
resenting Boolean functions. In Proc. of KR’06, pages
277–285, 2006.

	Introduction
	Preliminaries
	The Affine Family
	A CNF-to-EADT Compiler
	Experiments
	Conclusion

