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Abstract

Belief merging aims at extracting a coherent and in-
formative view from a set of belief bases. A first re-
quirement for belief merging operators is to obey ba-
sic rationality conditions. Another expected property is
to preserve as much information as possible from the
input bases. In this paper, we show how new merging
operators, called compositional operators, can be de-
fined from existing ones. Such operators aim at offering
a higher discriminative power than the merging opera-
tors on which they are based, without leading to a com-
plexity shift or losing rationality postulates. We identify
some sufficient conditions for ensuring that rationality
is fully preserved by composition.

Introduction

Belief merging (Baral, Kraus, and Minker 1991; Revesz
1997; Lin and Mendelzon 1999; Konieczny and Pino Pérez
2002; Konieczny, Lang, and Marquis 2004; Benferhat et al.
2002; Everaere, Konieczny, and Marquis 2010) aims at ex-
tracting a coherent and informative view from a (usually
conflicting) set of belief bases.

Mainly developed in AI, belief merging is close to vot-
ing methods (Arrow 1963; Arrow, Sen, and Suzumura 2002)
as developed in social choice: in both cases the objective
is somehow to find a point of view which best reflects the
data provided by the group. An important requirement for a
voting method is to provide a unique winner whatever the
input profile, i.e., a voting method must achieve a maxi-
mal discrimination among the candidates. In belief merg-
ing one does not ask for such a strong requirement, espe-
cially because it would violate some expected postulates.
Thus when the bases are jointly consistent with the given
integrity constraints, the expected result of the merging pro-
cess consists of the conjunction of the bases with the con-
straints. This result is often not a complete base, and indeed,
in such a situation, there is no reason that the merging oper-
ator ”magically” completes the resulting base. Thus, within
belief merging, it would not really make sense to use arbi-
trary tie-breaking rules, as used in voting methods, in or-
der to improve arbitrarily the discriminative power of the
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approach. Nevertheless, the design of merging operators of-
fering a good discriminative power without questioning ra-
tionality is important since the resulting merged base is ex-
pected to be as informative as possible.

In order to make things more concrete, consider the fol-
lowing merging scenario. A murder has been committed in
a house and four witnesses saw somebody leaving the house
after the crime time. The evidence reported by the witnesses
was unfortunately highly conflicting:
• The first witness saw a woman, young (say, less than thirty

years old) and wearing a hat.
• The second witness saw a man, not that young (say, more

than thirty years old) and wearing a hat.
• The third witness saw a man, young but not wearing a hat.
• The fourth witness saw a man, not that young but not

wearing a hat.
What can be concluded from these pieces of evidence? Of

course, a consensual answer is not expected here since there
are several rational ways to merge conflicting data. One of
them consists in accepting the facts which are supported by
as many sources of information as possible. On this exam-
ple, three witnesses over four agree that the person who left
the house were a man, but there is no agreement on the other
facts (precisely half of the people saw a young person, and
half of the people also saw a person wearing a hat.) Here
the conclusion is just that the suspect is a man. A second
merging principle consists in according to each description
as much credit as the number of sources of information it
satisfies. Since each testimony conflicts with the other ones,
the corresponding conclusion is just the disjunction of all
testimonies (note that all the sources of information agree
on this disjunction.)

In formal terms, the first conclusion can be derived by tak-
ing advantage of the distance-based merging operator1 given
by the Hamming distance and sum as an aggregation func-
tion, while the second conclusion can be drawn using the
distance-based merging operator given by the drastic dis-
tance and sum as an aggregation function. Both operators
can be viewed as capturing rational ways to merge in the
sense that they are Integrity Constraints (IC) merging oper-
ators (i.e., they satisfy the expected postulates for merging.)

1See Section IC Merging for a formal definition.



But what if the two merging principles are to be jointly
applied? In this case, the expected conclusion is that the sus-
pect is a man who is not that young or does not wear a hat.
This conclusion is more informative than both conclusions
derived so far. But is it possible to draw it using a rational
merging operator?

The main objective of this paper is to determine how to
model rational merging operators enabling to derive such
refined conclusions. In particular, we are interested in de-
termining whether (and under which conditions) existing IC
merging operators can be composed in such a way that the
resulting operator is rational as well. To this end, we define
compositional merging operators and study their properties.
Composing merging operators typically leads to new merg-
ing operators. As to postulates, we show that all rational-
ity postulates but (IC4) are preserved by composition. We
also identify a number of sufficient conditions on the merg-
ing operators used in the composition for ensuring (IC4).
We show that the complexity bounds of the inference prob-
lem for compositional merging operators are the same ones
as those for the merging operators on which they are based.
Especially, the increase of inferential power offered by com-
position does not lead to a complexity shift.

Preliminaries

We consider a propositional language L defined from a finite
set of propositional variables P and the usual connectives.

An interpretation (or state of the world) ! is a total func-
tion from P to {0, 1}. ⌦ is the set of all interpretations. An
interpretation is usually denoted by a bit vector whenever a
strict total order on P is specified. An interpretation ! is a
model of a formula � 2 L if and only if it makes it true in
the usual truth functional way. [�] denotes the set of models
of formula �, i.e., [�] = {! 2 ⌦ | ! |= �}.

A base K denotes the set of beliefs of an agent, it is a finite
set of propositional formulae, interpreted conjunctively (i.e.,
viewed as the conjunction of its elements.)

A profile E denotes a group of n agents that are involved
in the merging process; formally E is given by a muti-set
{K1, . . . ,Kn} of bases.

V
E denotes the conjunction of

all elements of E, and t denotes the multi-set union. Two
multi-sets E = {K1, . . . ,Kn} and E = {K 0

1, . . . ,K
0
n} are

equivalent, noted E ⌘ E

0, iff there exists a permutation ⇡

over {1, . . . , n} such that for each i 2 1, . . . , n, we have
Ki ⌘ K

0
⇡(i).

A merging operator 4 is a function which associates with
a profile E and an integrity constraint µ (a formula from L)
a (merged) base 4µ(E), and which satisfies the postulates
(IC0) and (IC1), recalled in the next section. 4(E) is an
abbreviation for 4>(E).

A merging operator �1 is said to be as discriminative as
a merging operator �2, noted �

1 |= �

2, iff for any profile
E and integrity constraint µ, we have �

1
µ(E) |= �

2
µ(E).

Finally, whenever  denotes a pre-order, ' denotes the
corresponding indifference relation (i.e. the equivalence re-
lation given by  \ �), and the symbol < denotes the
strict part of . min(S,) is the set of all ! 2 S such that
@!0 2 S, !0

< !.

IC Merging

In the following, the rationality postulates for merging
pointed out in (Konieczny and Pino Pérez 2002) are con-
sidered:

Definition 1 A merging operator 4 is an IC merging oper-
ator iff it satisfies the following properties:

(IC0) 4µ(E) |= µ

(IC1) If µ is consistent, then 4µ(E) is consistent
(IC2) If

V
E is consistent with µ, then 4µ(E) ⌘

V
E ^ µ

(IC3) If E1 ⌘ E2 and µ1 ⌘ µ2, then 4µ1(E1) ⌘ 4µ2(E2)

(IC4) If K1 |= µ and K2 |= µ, then 4µ({K1,K2})^K1 is
consistent if and only if 4µ({K1,K2})^K2 is consistent

(IC5) 4µ(E1) ^4µ(E2) |= 4µ(E1 t E2)

(IC6) If 4µ(E1) ^4µ(E2) is consistent,
then 4µ(E1 t E2) |= 4µ(E1) ^4µ(E2)

(IC7) 4µ1(E) ^ µ2 |= 4µ1^µ2(E)

(IC8) If 4µ1(E) ^ µ2 is consistent,
then 4µ1^µ2(E) |= 4µ1(E)

IC merging operators can be equivalently characterized in
terms of syncretic assignments:

Definition 2 A syncretic assignment is a function mapping
each profile E to a total pre-order E over ⌦ such that for
any profiles E,E1, E2 and for any belief bases K,K

0 the
following conditions hold:

1. If ! |=
V
E and !

0 |=
V

E, then ! 'E !

0

2. If ! |=
V
E and !

0 6|=
V

E, then ! <E !

0

3. If E1 ⌘ E2, then E1=E2

4. 8! |= K 9!0 |= K

0
!

0 {K,K0} !

5. If ! E1 !

0 and ! E2 !

0, then ! E1tE2 !

0

6. If ! <E1 !

0 and ! E2 !

0, then ! <E1tE2 !

0

Proposition 1 ((Konieczny and Pino P

´

erez 2002))

A merging operator 4 is an IC merging operator iff
there exists a syncretic assignment that maps each
profile E to a total pre-order E over ⌦ such that
[4µ(E)] = min([µ],E).

The proof of this representation theorem shows that a sim-
ilar characterization result can be obtained if one removes
the fairness property (IC4) from the set of postulates and
condition 4 from the conditions of the syncretic assignment
(see (Konieczny and Pino Pérez 2002) for details.) Let us
call a weak-syncretic assignment an assignment that satisfies
conditions 1, 2, 3, 5, 6 in Definition 2. Thus, as a corollary,
we have:

Corollary 1 A merging operator 4 satisfies postulates
(IC0)-(IC3) and (IC5-IC8) (it is then called a wIC merging
operator) iff there exists a weak-syncretic assignment that
maps each profile E to a total pre-order E over ⌦ such
that [4µ(E)] = min([µ],E).

A convenient way to define IC merging operators consists
in using a distance and an aggregation function:

Definition 3 A (pseudo-)distance between interpretations is
a function d : ⌦ ⇥ ⌦ ! IR+ such that for any !1, !2 2 ⌦:



[K1] = {011} [K2] = {101} [K3] = {110} [K4] = {100} E = {K1,K2,K3,K4}
dD dH dD dH dD dH dD dH ddD,⌃ ddH ,⌃

000 1 2 1 2 1 2 1 1 4 7
001 1 1 1 1 1 3 1 2 4 7
010 1 1 1 3 1 1 1 2 4 7
011 0 0 1 2 1 2 1 3 3 7
100 1 3 1 1 1 1 0 0 3 5
101 1 2 0 0 1 2 1 1 3 5
110 1 2 1 2 0 0 1 1 3 5
111 1 1 1 1 1 1 1 2 4 5

Table 1: Merging belief bases with �

dD,⌃
•�

dH ,⌃

• d(!1,!2) = d(!2,!1)

• d(!1,!2) = 0 iff !1 = !2

Usual distances considered in merging (Konieczny and
Pino Pérez 2002) are the Hamming distance dH : dH(!1,!2)

is the number of propositional letters on which the two in-
terpretations differ (this corresponds to the 1-norm distance,
also referred to as the Manhattan distance) and the drastic
distance dD, defined as dD(!1,!2) = 0 if !1 = !2, and
= 1 otherwise (this corresponds to the infinity-norm dis-
tance, also known as Chebyshev distance.)
Definition 4 An aggregation function f is a function map-
ping for any positive integer n, each n-tuple of non-negative
real numbers into a non-negative real number such that for
any x1, . . . , xn, x, y 2 IR+:
• if x  y, then f(x1, ..., x, ..., xn)  f(x1, ..., y, ..., xn)

• f(x1, . . . , xn) = 0 iff x1 = . . . = xn = 0

• f(x) = x

Standard aggregation functions are sum (⌃), max, lexi-
max (Gmax), leximin (Gmin), etc. (see (Konieczny and Pino
Pérez 2002; Everaere, Konieczny, and Marquis 2010) for
definitions.)
Definition 5 Let d and f be a distance between interpreta-
tions and an aggregation function respectively. The distance-
based merging operator 4d,f is defined by [4d,f

µ (E)] =

min([µ],E), where the total pre-order E on ⌦ is defined
in the following way (with E = {K1, . . . ,Kn}):
• d(!,K) = min!0|=K d(!,!

0
)

• d(!, E) = f(d(!,K1), . . . , d(!,Kn))

• ! E !

0 iff d(!, E)  d(!

0
, E)

Usual distance-based merging operators are IC merging
operators (see (Konieczny, Lang, and Marquis 2004) for
more details.)

Compositional Belief Merging

Let us start with the definition of compositional belief merg-
ing operators:
Definition 6 Given two merging operators �1 and �

2, we
define the compositional merging operator �2

•�
1 by

�

2
•�

1
µ(E) = �

2
�1

µ(E)(E)

where E is any profile and µ any integrity constraint.

Clearly enough, this definition makes sense since �

2
•�

1

always satisfies (IC0) and (IC1) as soon as both �

1 and �

2

satisfy it. • can thus be viewed as a composition law for be-
lief merging operators.

Given n merging operators �

1
, . . . ,�

n, �

n
• . . . •�

1

denotes the compositional merging operator given by
�

n
•(�

n�1
•(. . . •�

1
)...). Parentheses can be freely omitted

in this sequence. Indeed, it is easy to show that • is associa-
tive:

Proposition 2 Given three merging operators �

1, �2 and
�

3, we have �

1
•(�

2
•�

3
) = (�

1
•�

2
)•�

3.

For each i 2 1, . . . , n, �i
• . . . •�

1 is referred to as a sub-
operator of �n

• . . . •�
1.

We now make precise the extent to which composing
merging operators allow for preserving more information
from the input profile:

Proposition 3 For any merging operators �1
, . . . ,�

n, for
any i s.t. 1  i  n, we have �

n
• . . . •�

1 |= �

i
• . . . •�

1
.

This property shows that compositional merging opera-
tors are at least as discriminative as their suboperators. In
particular, as expected, the compositional merging operator
�

n
• . . . •�

1 is always at least as discriminative as the first
merging operator �1 used in its definition.

Let us illustrate this property by providing a formal ex-
ample, which is a counterpart of the informal example dis-
cussed in the introduction (we consider three propositional
letters meaning respectively ”man”, ”young”, ”wearing a
hat”; these letters are always considered in this order.)

Example 1 Let us consider the profile E = {K1, K2, K3,

K4} with [K1] = {011}, [K2] = {101}, [K3] = {110},
[K4] = {100} which correspond respectively to the testi-
monies of witnesses 1 to 4. Here µ = > (i.e., there is no
integrity constraint). Computations are summarized in Ta-
ble 1, where, for each interpretation ! (first column), the
next columns give successively the drastic distance and the
Hamming distance between ! and the four bases of E. The
last two columns give respectively the distances between !

and E according to the two operators �

dD,⌃ and �

dH ,⌃.
The minimal distances in those two columns are bold faced.
The models of �dD,⌃

•�
dH ,⌃

(E) are given by the colored
raws.
In this example [�

dD,⌃
•�

dH ,⌃
(E)] = {100, 101, 110},

whereas [�

dD,⌃
(E)] = {011, 100, 101, 110}, and



[�

dH ,⌃
(E)] = {100, 101, 110, 111}. Thus this exam-

ple shows that neither �

dD,⌃ nor �

dH ,⌃ gives the same
merged base as �

dD,⌃
•�

dH ,⌃ for this profile and integrity
constraint. Furthermore, we have �

dD,⌃
•�

dH ,⌃
(E) |=

�

dD,⌃
(E) and �

dD,⌃
•�

dH ,⌃
(E) |= �

dH ,⌃
(E). None of

the converse entailments holds.

Let us now give a semantical definition of compositional
merging operators, when the merging operators used in their
definition are wIC merging operators. Given n binary rela-
tions 1

, . . . ,n, let lex (1
, . . . ,n

) denote the binary re-
lation given by x lex (1

, . . . ,n
) y iff (8i 2 1, . . . , n, x 'i

y) or (9k 2 1, . . . , n, 81  i < k, x 'i
y and x <

k
y). It is

easy to show that lex (1
, . . . ,n

) is a total pre-order when
1

, . . . ,n are total pre-orders.

Proposition 4 Let �1
, . . . ,�

n be n wIC merging opera-
tors. Let E be any profile and µ be any integrity constraint.
Let us note i

E the pre-order associated with E by the weak-
syncretic assignment of operator �i. Then

[�

n
• . . . •�

1
µ(E)] = min([µ],E)

where E= lex (1
E , . . . ,n

E).

This semantical characterization shows that the models of
the merged base consists precisely of the models of µ, which
are in sequence, minimal with respect to i

E , when i varies
from 1 to n. In formal terms, we have: [�n

• . . . •�
1
µ(E)] =

min(. . .min(min([µ],1
E),2

E), . . . ,n
E).

We now state some properties making precise some log-
ical connections between the compositional merging opera-
tor �n

• . . . •�
1 and the merging operators �1

, . . . ,�

n used
in its definition. Of course, nothing prevents such merging
operators �1

, . . . ,�

n from being themselves compositional
operators. Since • is associative, the only important point is
to preserve the ordering of the non-compositional operators
at work in the composition sequence. Indeed, this ordering
has a strong impact on the resulting merged base in the gen-
eral case:

Example 2 Consider K1 = {00}, K2 = {11} and the pro-
file E = {K1,K2,K2}. Assume that there is no integrity
constraint (µ = >). Then [�

dH ,Gmax
•�

dH ,⌃
(E)] = {11}

while [�

dH ,⌃
•�

dH ,Gmax
(E)] = {10, 01}.

It is easy to show that • has a neutral element, the ”trivial”
merging operator �t given by �

t
µ(E) ⌘ µ, and that com-

position of merging operators satisfying (IC2) has a neutral
element as well: the drastic merging operator �d such that
�

d
µ(E) ⌘

V
E^µ if consistent, and �

d
µ(E) ⌘ µ otherwise.

The following proposition furnishes some sufficient con-
ditions for removing merging operators in composition se-
quences:

Proposition 5 Let �1 and �

2 be two wIC merging opera-
tors.

1. �

2
•�

1
= �

2 iff �2 |= �

1.
2. �

2
•�

1
= �

1 if �1 |= �

2.

This proposition shows that in any composition sequence
of wIC merging operators, one can always remove from two
successive operators the less discriminative one. Formally:

Proposition 6 Let �1, �2 be two wIC merging operators.
We have �

1
•�

2
•�

1
= �

2
•�

1.
Consequently, since • is associative, in every composition

sequence defining a compositional merging operator, keep-
ing only the very last occurrence of any multi-occurrent op-
erator leads to an equivalent merging operator.

We now successively consider the properties offered by
compositional merging operators, from the rationality point
of view, from the point of view of inferential power, and
finally from a computational perspective.
Proposition 7 If �1

,�

2
, . . . ,�

n are wIC merging opera-
tors, then �

n
•�

n�1
• . . . •�

1 is a wIC merging operator.
This is a very interesting property since it ensures that de-

riving new belief merging operators by composing existing
wIC ones preserves their rationality.

It is worthwhile noting that a similar property does not
hold for “full” IC operators, i.e., (IC4) may be lost by com-
position. Indeed, let us consider two propositional letters
a and b (taken in this order), two bases K1 and K2 such
that [K1] = {00} and [K2] = {01, 10}. Let us also con-
sider two (pseudo-)distances d1 and d2 given by d1(!,!

0
)=

dD(!a,!
0
a)+2⇤dD(!b,!

0
b) and d2(!,!

0
)= 2⇤dD(!a,!

0
a)+

dD(!b,!
0
b), where !x is the restriction of the interpreta-

tion ! over the propositional letter x. The distance-based
merging operators given by d1 (resp. d2) and ⌃ as aggre-
gation function are IC merging operators (Konieczny, Lang,
and Marquis 2004). However [�d2,⌃•�

d1,⌃
> ({K1,K2})] =

{00}. Thus, the resulting merged base is consistent with K1

but it is not consistent with K2, which shows that (IC4) is
not satisfied.

The preservation of (IC4) can be guaranteed nevertheless
in some restricted cases:
Proposition 8 If � is an IC merging operator, then
�

dD,⌃
•� and �•�

dD,⌃ are IC merging operators.
The latter proposition shows in particular that the compo-

sitional belief merging operator �

dD,⌃
•�

dH ,⌃ considered
in Example 1 is an IC merging operator, which addresses an
issue considered in the introduction. Furthermore, it turns
out that this proposition is not as restricted as it appears at
a first glance. Indeed, when considering the drastic distance
dD, distance-based merging typically amounts to using ⌃ as
aggregation function:
Definition 7 An aggregation function f satisfies symmetry
if for any permutation ⇡ over {1, . . . , n},
f(x1, . . . , xn) = f(x⇡(1), . . . , x⇡(n)).

An aggregation function f satisfies strict monotony if
x < y =) f(x1, . . . , x, . . . , xn) < f(x1, . . . , y, . . . , xn).

Proposition 9 For any aggregation function f satisfying
symmetry and strict monotony, �dD,f

= �

dD,⌃.
Another way to guarantee that (IC4) is preserved consists

in taking advantage of distance-based merging operators de-
fined from the same distance:
Proposition 10 Let f1, . . . , fn be n aggregation functions,
and let d be a distance such that the operators �d,fi are IC
merging operators. Then �

d,fn•�
d,fn�1• . . . •�

d,f1 is an IC
merging operator.



Let us now focus on the discrimination issue for compo-
sitional merging. The main question concerns the possibility
of selecting a single interpretation via a merging sequence:

Definition 8 � is said to be a maxichoice merging operator
if �µ(E) is a complete formula (i.e., it has a single model)
when µ is consistent and

V
E ^ µ is inconsistent.

Maxichoice operators exhibit a full discrimination among
the models of µ whenever

V
E ^ µ is inconsistent. Thus,

the maxichoice requirement can prove useful if one wants
to select exactly one solution (for instance, for a decision
making purpose) from conflicting bases. Maxichoice opera-
tors also play the role of tie-breaking rules when occurring
as initials in composition sequences, since no further refine-
ment is possible once a maxichoice merging operator has
ben considered.

A valuable family of maxichoice merging operators is
composed of imposed operators:

Definition 9 Let � be a total strict order on ⌦. The imposed
merging operator � induced by � is given by the assignment
with associates every profile E with the total pre-order E

over ⌦ such that:

• If ! |=
V

E and !

0 |=
V
E then ! 'E !

0

• If ! |=
V

E and !

0 6|=
V
E then ! <E !

0

• If ! 6|=
V

E and !

0 6|=
V
E then (! <E !

0 iff ! � !

0)

For any µ, [�µ(E)] = min([µ],E).

Proposition 11 Every imposed merging operator is a maxi-
choice merging operator.

It is interesting to note that imposed merging operators
exhibit good logical properties:

Proposition 12 Every imposed merging operator is a wIC
merging operator.

It is also easy to show that imposed merging operators
are not IC merging operators (they do not satisfy (IC4) in
general.)

As to the discriminative power, we can prove that any wIC
merging operator can be arbitrarily refined, until reaching a
maxichoice wIC merging operator, via a sequence of com-
positions:

Proposition 13 Every wIC merging operator �1 can be re-
fined to a maxichoice wIC merging operator, i.e., there exists
a sequence of wIC merging operators �n

• . . . •�
2 such that

�

n
• . . . •�

2
•�

1 is a maxichoice wIC merging operator.

Finally, we have identified some complexity bounds for
compositional merging operators:

Proposition 14 If �1
, . . . ,�

n are wIC merging operators
such that for every i 2 1, . . . , n and every profile E, decid-
ing whether !1 i

E !2 can be done in polynomial time for
any pair of interpretations !1, !2, then the inference prob-
lem for �n

• . . . •�
1 is in ⇧

p
2 and is Dp-hard.

Since these complexity bounds also hold when the se-
quence is reduced to a single operator �1, the gain in dis-
criminative power offered by composing belief merging op-
erators does not imply a complexity shift.

Conclusion

In this paper, we have considered composition as a way
to define new belief merging operators from existing ones.
Composition leads to merging operators with an improved
discriminative power, without questioning the most central
logical properties.

In (Gauwin, Konieczny, and Marquis 2007) iterated merg-
ing operators have been defined as a way to improve the dis-
criminative power of merging operators. In a nutshell, the
idea was to use a single merging operator on a given profile
in an iterative way, the merged base being used at each iter-
ation to revise each base of the profile. It turns out that the
resulting operators exhibit bad merging properties, but can
prove useful for modeling negotiation (or conciliation) pro-
cesses. Contrastingly, the compositional merging operators
defined in this paper are based on several merging operators
and offer better merging properties.
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