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Abstract
Existing belief merging operators take advantage of all the models from the bases, including those contradicting the integrity
constraint. In this paper, we argue that this is not suited to every merging scenario, especially when the integrity constraint
encodes physical laws. In that case the bases have to be ‘rationalized’ with respect to the integrity constraint during the
merging process. We define several conditions characterizing the operators that are independent to such a rationalization
process, and we show how these conditions interact with the standard IC postulates for belief merging. Especially, we give an
independence-based axiomatic characterization of a distance-based operator.
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1 Introduction

Belief merging operators [15, 17] aim at computing the beliefs of a group of agents from a profile
of belief bases representing the individual beliefs of the agents and some integrity constraint which
typically represent physical laws or norms.

There are usually several ways to merge a profile of belief bases given some integrity constraint.
The rational ones are characterized by a set of rationality postulates, the IC postulates [15], that
merging operators should satisfy. Such operators are called IC merging operators.

Existing IC merging operators take advantage of every model from every base of the input profile,
including those contradicting the given integrity constraint. However, this is not suited to every
merging scenario. Especially, when the integrity constraint encodes knowledge about the underlying
system, or structural laws due to the choice of encoding, the exploitation in the merging process of
‘infeasible’ worlds (i.e. conflicting with the constraints) can be questioned.

For instance, Condotta et al. [5] developed a framework for merging qualitative spatial or temporal
information expressed in propositional logic. In this setting, an integrity constraint is used for
encoding the spatial and/or temporal laws. The point is that if some variables encode the order
between some time points, some worlds correspond to physically infeasible scenarios. For instance,
consider three instants t1, t2 and t3, forming a scenario such that t1 <T t2, t2 <T t3 and t3 <T t1,
under the constraint that the time line T is totally ordered. It is reasonable to assume that such
infeasible scenarios should be discarded in such a way that they have no impact on the resulting
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1602 Belief base rationalization

merged base. The problem here comes from the fact that the integrity constraint (i.e. the fact that
<T is transitive and irreflexive) is not explicitly represented, but this may also happen if this was the
case. Let us illustrate it by focusing on a simple standard merging scenario.

EXAMPLE 1.1
Alice and Bob are asked to express their beliefs about the relative location of three French cities:
Lyon, Marseille and Aix-en-Provence. Alice believes that Lyon is located north of Aix-en-Provence,
and that Aix-en-Provence is located north of Marseille. Bob believes that Aix-en-Provence is the
most southern city of the three. The way informal propositions of interest are associated with
propositional symbols is not ruled by logic or by the merging process, and thus there are several
ways to represent this kind of information. For instance, let us consider the three propositional
symbols pLA, pAM and pLM , which respectively stand for ‘Lyon is north of Aix-en-Provence’,
‘Aix-en-Provence is north of Marseille’, and ‘Lyon is north of Marseille’. Then Alice’s beliefs can be
encoded by the propositional formula ϕ1 = pLA ∧pAM , and Bob’s beliefs by ϕ2 = pLA ∧¬pAM . From
the three propositional variables considered in this encoding, we obtain eight possible worlds. For
instance, the world 1011 represents the scenario where Lyon is the most northern city and Aix-en-
Provence is the most southern one. This encoding is expressive enough to represent all six scenarios
characterizing the relative positions of the three cities w.r.t. the meridian, which correspond to the six
worlds 000, 100, 010, 101, 011 and 111. But then, the two remaining worlds, 110 and 001, represent
two scenarios that are ‘inconceivable’ in the underlying domain. This is because the relation ‘north
of’ is transitive: for instance, if Lyon is north of Aix-en-Provence and Aix-en-Provence is north
of Marseille, then Lyon cannot conceivably be south of Marseille. Such transitivity rule can be
represented by the integrity constraint μ = ((pLA ∧ pAM ) ⇒ pLM ) ∧ ((¬pAM ∧ ¬pLA) ⇒ ¬pLM ),
and doing so, the models of μ characterize the set of all six possible worlds.

Now, what can be deduced from Alice and Bob’s beliefs from a global viewpoint? The answer
depends on the merging operator under consideration. Consider the IC merging operator based on
the Hamming distance and sum as aggregation function (ΔdH ,�) [15]; for this operator, the models
of the merged base representing the beliefs of the group are the models of the integrity constraint
which are as close as possible to the profile consisting of the two sources of information, where the
distance between two worlds is evaluated as the number of atomic facts on which they differ. Among
the six models of the integrity constraint, the worlds 100, 101 and 111 are both models of one of
the two sources, and at distance 1 from the other source (see Figure 1). The worlds 000, 010, 001
and 011 are both at distance 1 of one of the sources, and at distance 2 from the other source. Hence,
using sum as aggregation function, we get that the three worlds 100, 101 and 111 are kept as models
of the merged base. This corresponds to the models of the formula μ ∧ pLA which characterize all
possible scenarios where Lyon is north of Aix-en-Provence.

But it can be seen that whereas both sources provide the same ‘amount’ of information given the
choice of encoding (ϕ1 and ϕ2 have two models each), ϕ1 actually provides more precise information
than ϕ2 in the underlying domain. This is due to the transivity of the relation ‘north of’ encoded
through the integrity constraint μ. When Alice claims that Lyon is north of Aix-en-Provence (pLA)
and that Aix-en-Provence is north of Marseille (pAM ), she also implicitly states that Lyon is north
of Marseille (pLM ). In comparison, by stating that Aix-en-Provence is the most southern city of the
three, Bob clearly does not provide any information about the relative position of Lyon and Marseille.
Then 100 is at distance 1 from ϕ1 only because it is at distance 1 of the model 110 of ϕ1, whereas

1In short, worlds are denoted as binary sequences following the ordering pLA < pAM < pLM .
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Belief base rationalization 1603

FIGURE 1. Graphical representation of the integrity constraint μ and the two sources (ϕ1 and ϕ2).

this model does not correspond to a conceivable world given the integrity constraint. Thus, it makes
sense to disqualify this world. If we do it so that Alice now states that pLA ∧ pAM ∧ pLM (to be
fully compatible with the integrity constraint), then the merged base obtained using the same belief
merging operator corresponds to a formula equivalent to pLA∧pLM , i.e. it still states that Lyon is north
of Aix-en-Provence (both sources agree on that), but it also states that Lyon is north of Marseille,
which makes sense given that it can be derived from Alice’s beliefs and it is not conflicting with
Bob’s beliefs.

As illustrated in this example, it may be desirable to ‘rationalize’ (i.e. refraining to take account for
‘impossible’ worlds) the input beliefs by the integrity constraint before merging them, in the context
where these constraints encode the ‘physical laws’ of the considered domain. Indeed, such laws may
not be explicitely provided by agents, because these laws are either common sense, or because the
agents are not necessarily aware of the way the problem is encoded.

The ‘infeasible’ worlds considered in the above example may not be always inconceivable. Yet
rationalization of the input beliefs may also be desirable, e.g. when the integrity constraint encodes
some knowledge about the underlying domain.

EXAMPLE 1.2
One tries to seek in which city Charles lives. Bob believes that Charles lives in Rijsel, and Alice
believes that Charles does not live in Lille. It turns out that the two names ‘Lille’ and ‘Rijsel’ refer
to the same city (‘Lille’ is its French name and ‘Rijsel’ its Flemish name), and Bob knows it, and
actually additionally mentions that Lille and Rijsel refer to the same city. If one chooses to represent
both city names for the merging purpose, one can consider two propositions pL and pR, respectively
standing for ‘Charles lives in Lille’ and ‘Charles lives in Rijsel’. Then the beliefs of Alice can be
encoded as ϕ′

1 = ¬pL, while Bob’s ones can be expressed as ϕ′
2 = pL ∧ (pL ⇔ pR). Here, the

integrity constraint expresses the fact that Lille and Rijsel refer to the same city, i.e. μ′ = pL ⇔ pR
(see Figure 2). Consider again the IC merging operator based on the Hamming distance and sum
as aggregation function (ΔdH ,�) [15]. There are two possible worlds compatible with the integrity
constraint, 00 (Charles does not live in Lille / Rijsel) and 11 (Charles lives in Lille / Rijsel). 00 is at
distance 0 from ϕ′

1 (this world is a model of ϕ′
1) and at distance 2 from ϕ′

2. 11 is at distance 1 from
ϕ′

1 (since only the fact that Charles lives in Lille conflicts with the information conveyed by Alice)
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1604 Belief base rationalization

FIGURE 2. Graphical representation of the integrity constraint μ′ and the two sources (ϕ′
1 and ϕ′

2).

and at distance 0 from ϕ′
2. Hence, using sum as aggregation function, we get that only the world 11

is kept so that the beliefs of the group are that Charles lives in Lille/Rijsel.
But 11 is at distance 1 from ϕ′

1 only because it is at distance 1 of the model 01 of ϕ′
1, whereas

this model cannot correspond to a real-world situation given the integrity constraint. Thus, if we
disqualify this world so that Alice’s beliefs are rationalized w.r.t. the integrity constraint (i.e. one
considers ϕ′

1 ∧ μ instead of ϕ′
1 in the merging process), then one cannot derive any conclusion

from the merged base about the place where Charles lives. This is a more satisfactory result here:
there is no reason to give more credit to Bob’s beliefs only because he additionally mentioned some
knowledge (the fact that ‘Lille’ and ‘Rijsel’ refer to the same city) that is irrelevant to the issue under
consideration (the place where Charles lives).

In this paper, we do not make the distinction between the nature of those ‘infeasible worlds’ (i.e.
those not satisfying the integrity constraint). We argue that in some situations, they should not play
a role in the merging process, namely they should not have an impact on the resulting merged base.
This calls for a new property for merging operators, which requires that when merging belief bases,
the result should be equivalent to the one where every input belief base is rationalized with respect
to the integrity constraint.

At this stage, it must be noted that many concepts of ‘rationalization’ have been considered in
social sciences. Thus, in a decision making setting, a decision is rationalizable when it can be
explained, for instance by pointing out a state-of-affairs under which it is the best decision (e.g. the
one maximizing the utility of the decision maker) [4]. In voting theory, a voting rule is rationalizable
whenever one can find a distance between the agents’ preferences such that the collective preference
generated by the voting rule is as close as possible w.r.t. this distance to the input profile of
preferences [8]. Clearly enough, those notions of rationalization depart significantly from the one
considered in this paper, which amounts to refrain from taking into account in a merging process the
worlds which are irrelevant because they are ‘infeasible’.

The contributions of the paper are as follows. We begin by introducing some preliminaries
on belief merging, revision and update (Section 2). Then, in Section 3 we define a new class of
so-called rationalization-driven merging operators. These operators preprocess as a first step the
sources of information so as to fit the feasible worlds, i.e. the models of the integrity constraint;
as a second step they take advantage of a standard merging operator applied to the rationalized
sources of information to compute the merged result. Three types of rationalization are considered:
rationalization by expansion, by revision and by update. The standard merging operators considered
here are the IC merging operators [15]. As the IC operators assume consistent sources of information
and a rationalization by expansion may lead the resulting sources of information to be inconsistent,
we introduce the notion of EIC (for Extended IC) merging operator by considering in addition to
the standard IC postulates a new, harmless condition, so that inconsistent sources can be properly
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Belief base rationalization 1605

handled. We show in Section 4 that investigating the extent to which rationalization-driven operators
satisfy all IC postulates comes down to study the compatibility between the IC postulates and
an ‘independence to rationalization’ postulate, one for each type of rationalization. We present
an impossibility theorem when the rationalization step is update-based, and two characterization
theorems for the two remaining rationalization techniques, i.e. expansion and revision. Lastly,
Section 5 provides an independence-based axiomatic characterization of the distance-based operator
based on the drastic distance and on the sum aggregation function (ΔdD,�).

For the sake of readability, proofs of propositions are reported in a final appendix.

2 Formal preliminaries

We consider a propositional language L defined from a finite set of propositional variables P and
the usual connectives. ⊥ (resp. �) is the Boolean constant always false (resp. true.)

An interpretation (or world) is a total function from P to {0, 1}. The set of all interpretations is
denoted W . A world I is a model of a formula φ ∈ L if and only if it makes it true in the usual truth
functional way. mod(φ) denotes the set of models of formula φ, i.e. mod(φ) = {I ∈ W | I |	 φ}.
Let M be a set of worlds; ϕM denotes a formula from L whose models are M .

2.1 Belief merging

Belief merging aims at defining a belief base (the merged base) which represents the beliefs of a
group of agents given their individual belief bases, and some integrity constraint.

A belief base (base for short) denotes the set of beliefs of an agent. In this work, a base is a finite
set of propositional formulae, and its logical closure is the set of beliefs of the corresponding agent.
Belief bases are interpreted conjunctively, which means that a base can always be considered as a
single formula ϕ up to logical equivalence. This formula is the conjunction of the elements of the
base (it is well defined since a base contains finitely many elements).

A profile 〈1, . . . , n〉 is a (possibly empty) vector of agents involved in the merging process, where
n is any integer n ≥ 0. A belief profile K = 〈ϕ1, . . . , ϕn〉 is a (possibly empty) vector of bases, each
base ϕi representing the beliefs of agent i. When it is harmless, one usually does not distinguish
the notions of profile and belief profile, i.e. each base is identified with the agent providing it, and
the term ‘profile’ is used as a short for ‘belief profile’. A profile is said to be p-consistent if it is a
non-empty vector of consistent bases. We denote by B the set of all profiles, and we denote by B�

the set of all p-consistent profiles. The integrity constraint is represented by a formula, often denoted
by μ in this paper. The symbol 
 denotes the concatenation of profiles, i.e. if K1 = 〈ϕ1, . . . , ϕn〉 and
K2 = 〈ϕn+1, . . . , ϕn+m〉, then K1 
 K2 = 〈ϕ1, . . . , ϕn+m〉. The symbol ≡ denotes the equivalence
of profiles, i.e. two profiles are equivalent when there is a bijection between them so that each base
from a profile is equivalent to its image in the other profile. Lastly,

∧
K denotes the conjunction of

the belief bases of K, i.e.
∧

K = ∧{ϕi | ϕi ∈ K}, and given a base ϕ, the notation 〈ϕ〉n stands for
the profile 〈ϕ, . . . , ϕ

︸ ︷︷ ︸
n

〉.

Let us formalize the two examples drafted in the introduction.

EXAMPLE 1.1 (continued).
We have P = {pLA, pAM , pLM }, when pLA stands for ‘Lyon is north of Aix-en-Provence’, pAM stands
for ‘Aix-en-Provence is north of Marseille’ and pLM stands for ‘Lyon is north of Marseille’; K =
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1606 Belief base rationalization

〈ϕ1, ϕ2〉, with ϕ1 = pLA ∧pAM , ϕ2 = pLA ∧¬pAM ; μ = ((pLA ∧pAM ) ⇒ pLM )∧((¬pAM ∧¬pLA) ⇒
¬pLM ).

EXAMPLE 1.2 (continued).
We have P ′ = {pL, pR} (when pL (resp. pR) stands for ‘Charles lives in Lille (resp. Rijsel)); K′ =
〈ϕ′

1, ϕ′
2〉, with ϕ′

1 = ¬pL, ϕ′
2 = pL ∧ (pL ⇔ pR); μ′ = pL ⇔ pR.

A preorder ≤ is a reflexive and transitive relation, and < is its strict counterpart, i.e I < J if and
only if I ≤ J and J �≤ I . As usual, � is defined by I � J iff I ≤ J and J ≤ I . A preorder is total if
and only if ∀I , J , I ≤ J or J ≤ I . A preorder that is not total is said to be partial.

The assumption that inconsistent belief bases do not provide any information for the merging
process is standard, and as a consequence merging operators deal with p-consistent profiles (see [15,
Remark 2]).

DEFINITION 2.1 (Merging operator).
A merging operator Δ is a mapping from L × B� to L, i.e. it associates a formula μ (the integrity
constraint) and a p-consistent profile K with a new base Δμ(K) (the merged base).

Let us recall the standard logical properties which are expected for merging operators [15].

DEFINITION 2.2 (IC merging operator).
A merging operator Δ is an IC merging operator iff for any formulae μ, μ1, μ2, for any p-consistent
profiles K, K1, K2 and for any consistent belief bases ϕ1, ϕ2, it satisfies the following postulates:

(IC0) Δμ(K) |	 μ;
(IC1) If μ is consistent, then Δμ(K) is consistent;
(IC2) If

∧
K ∧ μ is consistent, then Δμ(K) ≡ ∧

K ∧ μ;
(IC3) If K1 ≡ K2 and μ1 ≡ μ2, then Δμ1(K1) ≡ Δμ2(K2);
(IC4) If ϕ1 |	 μ, ϕ2 |	 μ and Δμ({ϕ1, ϕ2}) ∧ ϕ1 are consistent,

then Δμ({ϕ1, ϕ2}) ∧ ϕ2 is consistent;
(IC5) Δμ(K1) ∧ Δμ(K2) |	 Δμ(K1 
 K2);
(IC6) If Δμ(K1) ∧ Δμ(K2) is consistent, then Δμ(K1 
 K2) |	 Δμ(K1) ∧ Δμ(K2);
(IC7) Δμ1(K) ∧ μ2 |	 Δμ1∧μ2(K);
(IC8) If Δμ1(K) ∧ μ2 is consistent, then Δμ1∧μ2(K) |	 Δμ1(K) ∧ μ2.

We refer the reader to [15] for an intuitive explanation of these postulates.
Each IC merging operator can be characterized by a syncretic assignment [15].

DEFINITION 2.3 (Syncretic assignment).
A syncretic assignment is a mapping which associates with every p-consistent profile K, a preorder
≤K over worlds2 and such that for every p-consistent profile K, K1, K2 and for every consistent
belief base ϕ1, ϕ2, ≤K satisfies the following conditions:3

(1) If I |	 K and J |	 K, then I �K J ;
(2) If I |	 K and J �|	 K, then I <K J ;

2For each preorder ≤K, �K denotes the corresponding indifference relation and <K the corresponding strict ordering.
When K = 〈ϕ〉 consists of a single base ϕ, we write ≤ϕ instead of ≤〈ϕ〉 in order to alleviate the notations.

3See [15] for intuitions about these conditions.
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Belief base rationalization 1607

(3) If K1 ≡ K2, then ≤K1=≤K2 ;
(4) ∀I |	 ϕ1, ∃J |	 ϕ2 J ≤〈ϕ1,ϕ2〉 I ;
(5) If I ≤K1 J and I ≤K2 J , then I ≤K1
K2 J ;
(6) If I <K1 J and I ≤K2 J , then I <K1
K2 J .

THEOREM 2.1 ([15]).
A merging operator Δ is an IC merging operator iff there exists a syncretic assignment associating
with every p-consistent profile K a total preorder ≤K such that for every formula μ, mod(Δμ(K)) =
min(mod(μ), ≤K).

Several families of IC merging operators can be defined, including distance-based merging
operators, i.e. operators characterized by a distance between worlds and an aggregation function
f (a mapping which associates with a tuple of non-negative real numbers a non-negative real
number) [13].

DEFINITION 2.4 (Distance-based merging operator).
Let d be a distance between worlds4 and f be an aggregation function. The distance-based merging
operator Δd,f is defined for every p-consistent profile K and every formula μ by mod(Δ

d,f
μ (K)) =

min(mod(μ), ≤K), where the preorder ≤K over worlds induced by K = 〈ϕ1, . . . , ϕn〉 is defined by

• I ≤K J if and only if d(I ,K) ≤ d(J ,K),
• d(I ,K) = f (〈d(I , ϕ1), . . . , d(I , ϕn)〉) and
• d(I , ϕ) = minJ |	ϕ d(I , J).

In short, in the following we denote fϕ∈K(d(I , ϕi)) = f (〈d(I , ϕ1), . . . , d(I , ϕn)〉).
Usual distances are the drastic distance (dD(I , J) = 0 if I = J and 1 otherwise), and the Hamming

distance (dH (I , J) = n if I and J differ on n variables.) Note that some distance-based operators
are not IC merging ones. Indeed, conditions of non-decreasingness, minimality, identity, symmetry,
composition and decomposition must be satisfied by f in the general case [13, 17]. We recall the
ones that will be used in the rest of this paper below and refer the reader to [13, 17] for details on
these additional conditions.

DEFINITION 2.5 (Properties on aggregation functions).
An aggregation function f satisfies

• (symmetry) iff for any permutation σ , f (x1, . . . , xn) = f (σ (x1, . . . , xn));
• (composition) iff f (x1, . . . , xn) ≤ f ( y1, . . . , yn) implies f (x1, . . . , xn, z) ≤ f ( y1, . . . , yn, z);
• (decomposition) iff f (x1, . . . , xn, z) ≤ f ( y1, . . . , yn, z) implies f (x1, . . . , xn) ≤ f ( y1, . . . , yn);

Usual aggregation functions such as �, Gmax (leximax), etc. satisfy all necessary conditions and
lead to IC merging operators [15]. Noteworthy, given a profile K and a formula μ, Δ

dD,�
μ (K) is

equivalent to any formula whose models are models of μ which are models of a maximal number of
bases from K.

4Actually, a pseudo-distance is enough, i.e. the triangular inequality is not necessary.
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1608 Belief base rationalization

EXAMPLE 1.1 (continued).
Consider again our example about the relative location of three french cities, i.e. K = 〈ϕ1, ϕ2〉, with
ϕ1 = pLA ∧ pAM , ϕ2 = pLA ∧ ¬pAM ; μ = ((pLA ∧ pAM ) ⇒ pLM ) ∧ ((¬pAM ∧ ¬pLA) ⇒ ¬pLM ).
We have

• Δ
dH ,�
μ (K) ≡ Δ

dD,�
μ (K) ≡ pLA ∧ ( pAM ⇒ pLM ) ≡ pLA ∧ μ.

EXAMPLE 1.2 (continued).
Consider now our example with the place where Charles live, i.e. K′ = 〈ϕ′

1, ϕ′
2〉, with ϕ′

1 = ¬pL,
ϕ′

2 = pL ∧ (pL ⇔ pR); μ′ = pL ⇔ pR. We have

- Δ
dH ,�
μ′ (K′) ≡ pL ∧ pR;

- Δ
dD,�
μ′ (K′) ≡ pL ⇔ pR.

2.2 Belief revision

Belief revision consists in incorporating into an existing belief base a new evidence represented
by a propositional formula. Alchourrón et al. [1] provided a logical characterization of belief
revision by means of the so-called AGM postulates. In the AGM framework, agent’s beliefs are
represented as theories, i.e. sets of formulae which are deductively closed. Revising a belief set by a
propositional formula results also results in a belief set. Here, we focus on Katsuno and Mendelzon’s
characterization of AGM belief revision over a finite propositional language, i.e. where an agent’s
beliefs are represented as a propositional formula (also called belief base) [11].

DEFINITION 2.6 (KM revision operator).
A KM revision operator ◦ is a mapping associating with a formula μ and a formula ϕ, a new formula
ϕ ◦ μ, such that for every formula μ, μ′, for any consistent bases ϕ, ϕ′, it satisfies the following
postulates:

(R1) ϕ ◦ μ |	 μ;
(R2) If ϕ ∧ μ is consistent, then ϕ ◦ μ ≡ ϕ ∧ μ;
(R3) If μ is consistent, then ϕ ◦ μ is consistent;
(R4) If ϕ ≡ ϕ′ and μ1 ≡ μ2, then ϕ ◦ μ ≡ ϕ′ ◦ μ′;
(R5) (ϕ ◦ μ) ∧ μ′ |	 ϕ ◦ (μ ∧ μ′);
(R6) If (ϕ ◦ μ) ∧ μ′ is consistent, then ϕ ◦ (μ ∧ μ′) |	 (ϕ ◦ μ) ∧ μ′.

As in the case of IC merging operators, KM revision operators can be characterized in terms of
total preorders over worlds. Indeed, each KM revision operator can be associated with a faithful
assignment [11].

DEFINITION 2.7 (Faithful assignment).
A faithful assignment is a mapping which associates with every formula ϕ a preorder ≤ϕ over worlds
and such that for every formulae ϕ, ϕ1, ϕ2, it satisfies the following conditions:

(1) If I |	 ϕ and J |	 ϕ, then I �ϕ J ;
(2) If I |	 ϕ and J �|	 ϕ, then I <ϕ J ;
(3) If ϕ1 ≡ ϕ2, then ≤ϕ1=≤ϕ2 .
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Belief base rationalization 1609

THEOREM 2.2 ([10]).
A revision operator ◦ is a KM revision operator if and only if there exists a faithful assignment
associating to every formula ϕ, a total preorder ≤K over worlds such that for every formula μ,

mod(ϕ ◦ μ) = min(mod(μ), ≤ϕ).

As in the belief merging case, some rational revision operators can be characterized using a notion
of distance (but no aggregation function is needed here). Thus, Dalal’s revision operator ◦Dal [6] is
defined by considering the faithful assignment associating with ϕ the total preorder ≤Dal

K defined
by I ≤Dal

ϕ J iff the Hamming distance from I to ϕ (i.e. the Hamming distance between I and the
closest model of ϕ) is lower than or equal to the Hamming distance from J to ϕ. Similarly, the
drastic revision operator ◦D (full meet revision operator [1]) is defined by considering the faithful
assignment associating with ϕ the total preorder ≤D

ϕ defined by I ≤D
ϕ J iff the drastic distance from

I to ϕ is lower than or equal to the drastic distance from J to ϕ. Alternatively, the drastic revision
operator ◦D can be defined as for every base ϕ and every formula μ,

ϕ ◦D μ =
{

ϕ ∧ μ if ϕ ∧ μ is consistent,
μ otherwise.

Finally, if Δ is an IC merging operator, then one can associate with it a KM revision operator ◦Δ.

DEFINITION 2.8 (◦Δ).
Let Δ be a merging operator. Its corresponding revision operator, denoted ◦Δ, is given by ϕ ◦Δ μ =
Δμ(〈ϕ〉).
THEOREM 2.3 ([15]).
If Δ satisfies (IC0–IC3) and (IC7–IC8), then ◦Δ is a KM revision operator (i.e. it satisfies (R1–R6)).

For instance, Dalal’s revision operator ◦Dal (resp. the drastic revision operator ◦D) corresponds to
any distance-based merging operator ΔdH ,f (resp. ΔdD,f ), for any aggregation function f satisfying
f (α) = α for every α ∈ R.

2.3 Belief update

Another family of change operators that is considered in this paper consists of belief update operators
[10]. Update operators perform a model-wise change, whereas belief revision operators make a
change at the base level (see [10] for a discussion). Such operators are defined as follows.

DEFINITION 2.9 (KM update operator).
A KM update operator � is a mapping associating with a formula μ and a formula ϕ, a new formula
ϕ � μ, such that for any formulae μ, μ1, μ2, for any consistent fomulas ϕ, ϕ1, ϕ2, it satisfies the
following postulates:

(U1) ϕ � μ |	 μ;
(U2) If ϕ |	 μ, then ϕ � μ ≡ ϕ;
(U3) If ϕ is consistent and μ is consistent, then ϕ � μ is consistent;
(U4) If ϕ1 ≡ ϕ2 and μ1 ≡ μ2, then ϕ1 � μ1 ≡ ϕ2 � μ2;
(U5) (ϕ � μ1) ∧ μ2 |	 ϕ � (μ1 ∧ μ2);
(U6) If (ϕ � μ1) |	 μ2 and (ϕ � μ2) |	 μ1, then ϕ � μ1 ≡ ϕ � μ2;

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/28/7/1601/5121493 by guest on 10 D
ecem

ber 2018



1610 Belief base rationalization

(U7) If ϕ is a complete5 formula, then (ϕ � μ1) ∧ (ϕ � μ2) |	 ϕ � (μ1 ∨ μ2);
(U8) (ϕ1 ∨ ϕ2) � μ ≡ (ϕ1 � μ) ∨ (ϕ2 � μ);
(U9) If ϕ is a complete formula and (ϕ�μ1)∧μ2 is consistent, then ϕ�(μ1∧μ2) |	 (ϕ�μ1)∧μ2.

There is also a characterization theorem for KM update operators in terms of total preorders over
worlds.

THEOREM 2.4 ([10]).
An update operator � is a KM update operator if and only if there exists a faithful assignment
associating every world I with a total preorder ≤ϕ{I} such that for every fomula ϕ and formula μ,

mod(ϕ � μ) =
⋃

I|	ϕ

min(mod(μ), ≤ϕ{I}).

As in the case of belief revision, some rational update operators can be characterized using a
notion of distance. Thus, Forbus’ operator �F [9] is defined by considering the faithful assignment
associating with any world I the preorder ≤Dal

ϕ{I} (thus, �F is based on the Hamming distance between

worlds). Similarly, the drastic update operator �D is defined by considering the faithful assignment
associating with I the total preorder ≤D

ϕ{I} (thus, �D is based on the drastic distance between worlds).

The symbol �D can also be defined as follows: for every base ϕ and every formula μ,

ϕ �D μ ≡
{

ϕ if ϕ |	 μ,
μ otherwise.

Using the formal links between revision and update (see for instance [16]), one can also define the
update operator �Δ induced from an IC merging operator Δ.

DEFINITION 2.10 (�Δ).
ϕ �Δ μ = ∨

I|	ϕ Δμ(〈ϕ{I}〉).
A direct consequence of Theorems 5 and 6 from [16] is as follows.

THEOREM 2.5 ([16]).
If Δ is an IC merging operator (i.e. it satisfies (IC0–IC8)), then �Δ is a KM update operator (i.e. it
satisfies (U1–U9)).

For instance, Forbus’ operator �F (resp. the drastic update operator �D) corresponds to any
distance-based merging operator ΔdH ,f (resp. ΔdD,f ), for any aggregation function f satisfying
f (x) = x for every x.

From now on, when Δ denotes a merging operator, ◦Δ and �Δ denote its corresponding revision
operator and update operator, respectively.

3 Rationalization-driven merging operators

As argued in the introduction, in a merging scenario where the integrity constraint represent physical
laws or norms it is often preferable to discard ‘infeasible’ worlds (i.e. interpretations that are not
models of the integrity constraint) from the merging process. A simple way to achieve this is to

5A formula is complete if it admits exactly one model.
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Belief base rationalization 1611

make as a first step an explicit rationalization of all the belief bases from the input profile K with
respect to the integrity constraint μ, so as to get a new profile K′:

So the problem is to know if the corresponding obtained operator Δ′ satisfies minimal rationality
postulates for merging:

(1)

Rationalizing a belief base with respect to some integrity constraint can take various forms
but such a modification fundamentally consists in modifying a base to fit the conceivable worlds
according to the integrity constraint. Merging a profile using Δ′ then consists in computing the
same merged base as the one obtained using Δ by first ‘removing’ from every base the worlds not
satisfying the integrity constraint.

Such an ‘expansion-based’ rationalizing process raises an issue for merging operators. Indeed,
whenever a belief base is inconsistent with the integrity constraint, its rationalization by expansion
leads to an inconsistent base, so that rationalized profiles may not be p-consistent anymore. Yet
merging operators are mappings from L×B� to L (cf. Definition 2.1), i.e. they deal with p-consistent
profiles only. To solve this problem, the domain of merging operators must be extended.

3.1 Extended merging operators

DEFINITION 3.1 (Extended merging operator).
An extended merging operator Δ is a mapping from L× B to L, i.e. it associates a formula μ and a
profile K with a new base Δμ(K).

Remark that the existing IC postulates (cf. Definition 2.2) do not rule the case when one has to
deal with a profile containing inconsistent bases. In order to fix this problem, we slightly extend the
IC postulates.

DEFINITION 3.2 (EIC merging operator).
An extended merging operator Δ is an EIC merging operator iff for any formulae μ, μ1, μ2, for
any profiles6 K, K1, K2 and for any consistent belief bases ϕ1, ϕ2, it satisfies (IC0–IC8) and the
following additional postulate, for any n ≥ 0:

(Inc) Δμ(〈⊥〉n) ≡ μ.

According to (Inc), merging a (possibly empty) trivial profile consisting of one or several instances
of the canonical inconsistent base ⊥ must lead to a merged base equivalent to the integrity constraint.
This postulate, which is not very demanding, echoes what is achieved by IC merging operators when
dealing with a trivial profile consisting only of logically valid bases (indeed, (IC2) ensures that the
merged base for such profiles is also equivalent to the integrity constraint). It is indeed natural to
assume that a profile 〈⊥〉n (n ≥ 0) does not provide more information than a profile 〈�〉n.

6Note that in contrast to the definition of usual IC merging operators (Definition 2.2), p-consistency of the profiles is not
required here.
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1612 Belief base rationalization

(Inc) as given in Definition 3.1 is given in a canonical form, in the sense that it tells how an
extended merging operator should behave when merging trivial profiles, but it does not explicitly say
anything when only some bases of the input profile are inconsistent. Nevertheless, extended merging
operators satisfying (Inc) together with some (IC) postulates (in particular, EIC merging operators)
lead to a merged base equivalent to the one obtained by first removing inconsistent bases from the
profile. This is formally stated by the following proposition.

PROPOSITION 3.1
Let Δ be an extended merging operator satisfying (Inc), (IC0), (IC1), (IC5) and (IC6). Then for
every profile K, for every formula μ and for every m ≥ 0,

Δμ(K 
 〈⊥〉m) ≡ Δμ(K).

Now, in order to derive a representation theorem for EIC operators, one needs the following notion
of assignment.

DEFINITION 3.3 (Extended syncretic assignment).
An extended syncretic assignment is a mapping which associates with every profile K a preorder
≤K over worlds which satisfies conditions (1–6) (cf. Definition 2.3) and the following additional
condition, for every n ≥ 0:

(0) I �〈⊥〉n J .

Then the standard representation theorem for IC merging operators can be extended to EIC
operators.

PROPOSITION 3.2
An extended merging operator Δ is an EIC merging operator iff there exists an extended syncretic
assignment associating every profile K with a total preorder ≤K such that for every formula μ,
mod(Δμ(K)) = min(mod(μ), ≤K).

Let us remark that when distance-based merging operators (cf. Definition 2.4) are applied to p-
consistent profiles, the distance between a world and a base ϕ is always defined. We now extend
the definition of a distance-based merging operator so that inconsistent bases can be handled in a
convenient way. To do so, it is enough to set the distance between any world and an inconsistent base
to be 0.

DEFINITION 3.4 (Extended distance-based merging operator).
Let d be a distance between worlds7 and f be an aggregation function. The extended distance-based
merging operator Δd,f is defined for every profile K and every formula μ by mod(Δ

d,f
μ (K)) =

min(mod(μ), ≤K), where the preorder ≤K over worlds induced by K is defined by

- I ≤K J if and only if d(I ,K) ≤ d(J ,K),
- d(I ,K) = fϕi∈K(d(I , ϕi))

- d(I , ϕ) =
{

minJ |	ϕd(I , J) If ϕ is consistent,
0 otherwise.

By convention, we set fϕi∈K(K) = 0 when K is empty.

7As in Definition 2.4, a pseudo-distance is enough, i.e. the triangular inequality is not necessary.
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Belief base rationalization 1613

It is easy to check that every extended distance-based merging operator satisfies (Inc).
Any merging operator defined on p-consistent profiles can be associated with an extended merging

operator that satisfies (Inc) and preserves each IC property satisfied by Δ.

DEFINITION 3.5 (Canonical extension of a merging operator).
Let Δ be a merging operator. The canonical extension of Δ is the extended merging operator Δ′
defined for any profile K and any formula μ as

Δ′
μ(K) =

{
Δμ(K�), if K contains a consistent base,
μ, otherwise,

where K� is the profile formed of the consistent bases from K given in the same order.

PROPOSITION 3.3
Let Δ be a merging operator and Δ′ its canonical extension. Then Δ′ satisfies (Inc), and for x ∈
{0, . . . , 8}, if Δ satisfies (ICx) then Δ′ satisfies (ICx).

This is why in the rest of the paper, for simplicity and without any harm, we will focus on canonical
extensions of merging operators only and the term ‘extended’ will be omitted when referring to
extended merging operators.

3.2 Expansion-based rationalization

We are now ready to introduce the definition of our expansion-based rationalizing merging
operators ΔE.

DEFINITION 3.6 (Expansion-based rationalizing merging operator).
A merging operator ΔE is said to be an expansion-based rationalizing merging operator if it satisfies
(Inc) and if there exists a merging operator Δ such that if for any formula μ, and any profile
〈ϕ1, . . . , ϕn〉,

ΔE
μ(〈ϕ1, . . . , ϕn〉) ≡ Δμ(〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉).

We will note ΔE[Δ] the expansion-based rationalizing merging operator induced by Δ.

Our running examples show that in the general case, ΔE[Δ] is ‘different’ from its associated
merging operator Δ. Consider for instance the merging operator ΔdH ,� and its induced expansion-
based rationalizing merging operator ΔE[ΔdH ,� ].

EXAMPLE 1.1 (continued).

- Δ
dH ,�
μ (〈ϕ1, ϕ2〉) ≡ pLA ∧ (pAM ⇒ pLM );

- Δ
E[ΔdH ,� ]
μ (〈ϕ1, ϕ2〉) ≡ Δ

dH ,�
μ (〈ϕ1 ∧ μ, ϕ2 ∧ μ〉)

≡ Δ
dH ,�
μ (〈pLA ∧ pAM ∧ pLM , pLA ∧ ¬pAM 〉)

≡ pLA ∧ pLM .

We can observe that Δ
E[ΔdH ,� ]
μ (〈ϕ1, ϕ2〉) �≡ Δ

dH ,�
μ (〈ϕ1, ϕ2〉).
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1614 Belief base rationalization

EXAMPLE 1.2 (continued).

- Δ
dH ,�
μ′ (〈ϕ′

1, ϕ′
2〉) ≡ pL ∧ pR;

- Δ
E[ΔdH ,� ]
μ′ (〈ϕ′

1, ϕ′
2〉) ≡ Δ

dH ,�
μ′ (〈ϕ′

1 ∧ μ′, ϕ′
2 ∧ μ′〉)

≡ Δ
dH ,�
μ′ (〈¬pL ∧ ¬pR, pL ∧ pR〉)

≡ pL ⇔ pR.

Again here, we can see that Δ
E[ΔdH ,� ]
μ′ (〈ϕ′

1, ϕ′
2〉) �≡ Δ

dH ,�
μ′ (〈ϕ′

1, ϕ′
2〉).

In the general case, the fact that Δ is an EIC merging operator is not sufficient to ensure that its
induced expansion-based rationalizing merging operator ΔE[Δ] satisfies all IC postulates.

PROPOSITION 3.4
Let ΔE[Δ] be the expansion-based rationalizing operator induced by Δ. For x ∈ {0, . . . , 6}, if Δ

satisfies (ICx) then ΔE[Δ] satisfies (ICx). This is not true in the general case for x ∈ {7, 8}.
This result shows that expanding all bases from an input profile with the integrity constraint before

merging them does not lead to a merging process satisfying all IC postulates. However, the situation
is different for distance-based merging operators based on the drastic distance, when some conditions
on the aggregation function are met.

PROPOSITION 3.5
For any aggregation function f which satisfies (symmetry), (composition) and (decomposition),
ΔdD,f is an expansion-based rationalizing merging operator, induced by itself.

As a consequence, since ΔdD,� satisfies all IC postulates [15], we get the following.

COROLLARY 3.1
ΔdD,� is an expansion-based rationalizing EIC merging operator.

3.3 Revision-based and update-based rationalization

Rationalization by expansion could be considered as a rather drastic process; when merging a profile
containing a belief base such that no model of it satisfies the integrity constraint, one simply removes
this base from the profile as an upstream step of the merging process. A more cautious behavior
would be to consider as still relevant the models of every base of the input profile, even when the
base is inconsistent with the integrity constraint μ; instead of removing such bases from the profiles,
one could repair them. For this purpose, one can take advantage of belief change operators in order to
derive, for each base inconsistent with μ, the closest base that is fully compatible with μ. Two kinds
of belief change operators appear as valuable candidates in this objective; KM revision operators
[1, 11] (cf. Definition 2.6) if one wants to repair the bases globally and KM update operators [10] (cf.
Definition 2.9) if one wants to repair the bases locally, in a model-wise fashion. The corresponding
rationalization-driven merging operators are defined as follows.8

DEFINITION 3.7 (Revision-based rationalizing merging operator).
A merging operator ΔR is said to be a revision-based rationalizing merging operator if it satisfies
(Inc), if one can associate with each agent i a KM revision operator (cf. Definition 2.6) ◦i and if there

8Let us recall that each base of a profile corresponds to the beliefs of an agent.
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Belief base rationalization 1615

exists a merging operator Δ such that for any formula μ and any profile 〈ϕ1, . . . , ϕn〉,

ΔR
μ(〈ϕ1, . . . , ϕn〉) ≡ Δμ(〈ϕ1 ◦1 μ, . . . , ϕn ◦n μ〉).

We denote by ΔR[Δ,〈◦1,...,◦n〉] the revision-based rationalizing merging operator induced by Δ and
〈◦1, . . . , ◦n〉.

DEFINITION 3.8 (Update-based rationalizing merging operator).
A merging operator ΔU is said to be an update-based rationalizing merging operator if it satisfies
(Inc), if one can associate with each agent i a KM update operator �i (cf. Definition 2.9) and if there
exists a merging operator Δ such that for any formula μ and any profile 〈ϕ1, . . . , ϕn〉,

ΔU
μ (〈ϕ1, . . . , ϕn〉) ≡ Δμ(〈ϕ1 �1 μ, . . . , ϕn �n μ〉).

We denote by ΔU[Δ,〈◦1,...,◦n〉] the update-based rationalizing merging operator induced by Δ and
〈�1, . . . , �n〉.

Note that in the above definitions, revision (resp. update) operators are KM ones, so in particular,
they satisfy the postulate (R1) (resp. (U1)). They are used to ‘repair’ each base according to the
integrity constraint, which is an essential characteristic of rationalization. Note that we do not impose
any connection between the belief change operators ◦i (resp. �i) associated with agent i and the
merging operator Δ under consideration. In addition, we do not impose any homogeneity condition,
i.e. the agents may have different revision/update policies. Hence, operators ΔR and ΔU depend not
only on a merging operator Δ but also on the KM revision/KM update operators associated with
each agent.

Now, as in the case of ΔE operators, we investigate the extent to which postulates satisfied by
Δ are also satisfied by the induced operators ΔR and ΔU . It turns out that a proposition similar
to Proposition 3.5 also holds for revision-based rationalizing merging operators, which means that
there exists a revision-based rationalizing merging operator satisfying all IC postulates.

PROPOSITION 3.6
For any aggregation function f which satisfies (symmetry), (composition) and (decomposition),
ΔdD,f is a revision-based rationalizing merging operator, induced by itself and 〈◦1, . . . , ◦n〉 with
◦1 = · · · = ◦n = ◦D, where ◦D is the drastic (KM) revision operator.

As a direct consequence,

COROLLARY 3.2
ΔdD,� is a revision-based rationalizing EIC merging operator.

However, we can show that the case of revision-based rationalizing merging operators is similar to
ΔE operators in general, i.e. not every property satisfied by a merging operator can be ‘transferred’
to its induced revision-based rationalizing merging operator.

PROPOSITION 3.7
Let ΔR be a revision-based rationalizing merging operator induced by Δ and ◦1, . . . , ◦n. For
x ∈ {0, . . . , 6}, if Δ satisfies (ICx) then ΔR satisfies (ICx). This is not true in the general case for
x ∈ {7, 8}.

The results are even weaker for update-based rationalizing merging operators.
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1616 Belief base rationalization

PROPOSITION 3.8
Let ΔU be an update-based rationalizing merging operator induced by Δ and �1, . . . , �n. For x ∈
{0, 1, 3, 4, 5, 6}, if Δ satisfies (ICx) then ΔU satisfies (ICx). This is not true in the general case for
x ∈ {2, 7, 8}.

Moreover, a direct adaptation of Corollary 3.2 to update-based rationalizing merging operators
does not hold, as shown by the following examples:

EXAMPLE 1.1 (continued).
Consider the merging operator ΔdD,� , let �1 = · · · = �n = �D where �D is the drastic update
operator, and let ΔU be the update-based rationalizing merging operator induced by ΔdD,� and
〈�1, . . . , �n〉. We have

- Δ
dD,�
μ (〈ϕ1, ϕ2〉) ≡ pLA ∧ (pAM ⇒ pLM );

- Δ
U[ΔdD ,� ]
μ (〈ϕ1, ϕ2〉) ≡ Δ

dD,�
μ (〈ϕ1 �D μ, ϕ2 �D μ〉)

≡ Δ
dD,�
μ (〈μ, ϕ2〉)

≡ ϕ2 ≡ pLA ∧ ¬pAM .

That is, Δ
U[ΔdD ,� ]
μ (〈ϕ1, ϕ2〉) �≡ Δ

dD,�
μ (〈ϕ1, ϕ2〉).

EXAMPLE 1.2 (continued).
Consider again the merging operator ΔdD,� , with �1 = · · · = �n = �D, �D being the drastic
update operator, and let ΔU be the update-based rationalizing merging operator induced by ΔdD,�

and 〈�1, . . . , �n〉:
- Δ

dD,�
μ′ (〈ϕ′

1, ϕ′
2〉) ≡ pL ⇔ pR;

- Δ
U[ΔdD ,� ]
μ′ (〈ϕ′

1, ϕ′
2〉) ≡ Δ

dD,�
μ′ (〈ϕ′

1 �D μ′, ϕ′
2 �D μ′〉)

≡ Δ
dD,�
μ′ (〈pL ⇔ pR, pL ∧ pR〉)

≡ ϕ1 ≡ pL ∧ pR.

That is, Δ
U[ΔdD ,� ]
μ′ (〈ϕ′

1, ϕ′
2〉) �≡ Δ

dD,�
μ′ (〈ϕ′

1, ϕ′
2〉).

Up to now, we have shown that performing a rationalization by expansion, revision or update of
each base from an input profile does not lead to a merging process satisfying all IC conditions in
the general case. We have also exhibited specific expansion-based and revision-based rationalizing
operators that satisfy (Inc) all IC properties (the rationalizing operators induced by the merging
operator based on the drastic distance and the sum function). We are interested now in characterizing
the class of all expansion/revision/update-based rationalizing operators that satisfy all IC postulates.
This is our goal in the following sections.

4 Independence to rationalization

In this section we investigate the compatibility of the rationalization-driven merging operators
introduced in the previous section, i.e. the expansion-based, revision-based and update-based
rationalizing merging operators, with respect to the IC postulates. We start by establishing a
connection between expansion-based and revision-based rationalizing operators. Then, we introduce
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Belief base rationalization 1617

an incompatibility result in the case of rationalization by update. This will be done by taking
advantage of independence to rationalization postulates, corresponding to the three considered types
of rationalization.

4.1 Rationalization by expansion and revision

We start with rationalization by expansion. Let us stress that each expansion-based rationalizing
operator considered in Proposition 3.5 coincides with the one characterizing it: merging operators
ΔdD,f based on the drastic distance dD and an aggregation function f satisfying some basic conditions
are induced by themselves. Formally, this precisely means that for every profile 〈ϕ1, . . . , ϕn〉 and
every formula μ, we have that

ΔE[ΔdD , f ]
μ (〈ϕ1, . . . , ϕn〉) ≡ Δ

dD, f
μ (〈ϕ1, . . . , ϕn〉) ≡ Δ

dD, f
μ (〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉).

In other words, the operators ΔdD,f satisfy a certain condition of independence to rationalization
by expansion, which states that merging a profile should lead to the same merged base (modulo
logical equivalence) as the one obtained by expanding every base with the integrity constraint. This
independence condition is formalized by the following postulate.

DEFINITION 4.1
(Ind) A merging operator Δ satisfies (Ind) iff for every formula μ and for every profile 〈ϕ1, . . . , ϕn〉,

Δμ(〈ϕ1, . . . , ϕn〉) ≡ Δμ(〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉).

(Ind) is close to the property of independence of irrelevant alternatives condition (IIA) considered
in social choice theory [2, 3] for aggregating preference relations. Condition (IIA) states that the
(aggregated) preference between two alternatives depends only on the preferences of the individuals
on these two alternatives, and not on the preferences with respect to other alternatives. For voting
rules (IIA) can be expressed as the fact that two preference profiles which coincide when projected
onto a given agenda should always lead to the same winner [12]. In our belief merging setting, the
set of models of the integrity constraint plays the role of the agenda for voting. Accordingly, an (IIA)
condition in the belief merging setting can be stated as follows.

DEFINITION 4.2
(IIA) A merging operator Δ satisfies (IIA) iff for every formula μ and for every profiles 〈ϕ1, . . . , ϕn〉,
〈ϕ′

1, . . . , ϕ′
n〉: if 〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉 ≡ 〈ϕ′

1 ∧ μ, . . . , ϕ′
n ∧ μ〉, then Δμ(〈ϕ1, . . . , ϕn〉) ≡

Δμ(〈ϕ′
1, . . . , ϕ′

n〉).
Clearly, our (Ind) condition is equivalent to (IIA) for syntax-insensitive merging operators.

Formally,

PROPOSITION 4.1
If Δ is a merging operator satisfying (IC3), then Δ satisfies (Ind) if and only if Δ satisfies (IIA).

Then, a direct consequence of Proposition 3.5 and Corollary 3.1 is that (Ind) is compatible with
all IC properties.

COROLLARY 4.1
ΔdD,� is an EIC merging operator satisfying (Ind).
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1618 Belief base rationalization

And of course, for syntax-insensitive merging operators (those satisfying (IC3)), being an
expansion-based rationalizing operator ensures to satisfy (Ind).

PROPOSITION 4.2
Let Δ be a merging operator satisfying (IC3). If Δ is an expansion-based rationalizing merging
operator, then it satisfies (Ind).

Let us now consider the case of rationalization by revision. We first introduce the independence
property corresponding to rationalization by revision.

DEFINITION 4.3
(Ind-◦) A merging operator Δ satisfies (Ind-◦) iff one can associate with each agent i a KM revision
operator ◦i such that for every formula μ and for every profile 〈ϕ1, . . . , ϕn〉,

Δμ(〈ϕ1, . . . , ϕn〉) ≡ Δμ(〈ϕ1 ◦1 μ, . . . , ϕn ◦n μ〉).

As for ΔE operators (Proposition 4.2), being a syntax-insensitive revision-based rationalizing
operator implies satisfying (Ind).

PROPOSITION 4.2
Let Δ be a merging operator satisfying (IC3). If Δ is a revision-based rationalizing merging operator,
then it satisfies (Ind-◦).

An interesting issue now concerns the set of admissible ‘rationalizing’ revision operators which
characterize a revision-based rationalizing merging operator. From Proposition 4.3 this boils down
to looking at what revision operators should be associated with each agent so that (Ind-◦) holds.
Actually, this choice is very constrained.

PROPOSITION 4.3
Let Δ be a merging operator satisfying (IC2) and (Ind-◦). Then every revision operator ◦i considered
in (Ind-◦) is the revision operator ◦Δ corresponding to Δ in the sense of Definition 2.8.

The choice of such a revision operator ◦Δ is even more restrained for EIC merging operators.

PROPOSITION 4.4
Let Δ be an EIC merging operator satisfying (Ind-◦). Then every revision operator ◦i is ◦D, the
drastic revision operator.

As a noticeable consequence of this proposition, we have the following.

PROPOSITION 4.5
Let Δ be an EIC merging operator. Δ satisfies (Ind) if and only if Δ satisfies (Ind-◦).

This last result shows that for EIC merging operators the two notions of independence (Ind)
and (Ind-◦) coincide, or equivalently speaking, that the sets of EIC expansion-based rationalizing
merging operators and EIC revision-based rationalizing merging operators are the same ones.

4.2 Rationalization by update: an incompatibility result

Let us now focus on rationalization by update. We are going to show that one of the most basic IC
postulates is incompatible with it. First, let us introduce the independence property corresponding to
rationalization by update.
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Belief base rationalization 1619

DEFINITION 4.4
(Ind-�) A merging operator Δ satisfies (Ind-�) iff one can associate with each agent i a KM update
operator �i such that for every formula μ and for every profile 〈ϕ1, . . . , ϕn〉,

Δμ(〈ϕ1, . . . , ϕn〉) ≡ Δμ(〈ϕ1 �1 μ, . . . , ϕn �n μ〉).

As in the case of ΔE and ΔR operators, the postulate (Ind-�) is satisfied by every syntax-insensitive
update-based rationalizing merging operator:

PROPOSITION 4.6
Let Δ be a merging operator satisfying (IC3). If Δ is an update-based rationalizing merging operator,
then it satisfies (Ind-�).

Whereas no restriction is imposed on the choice of KM update operator associated with each
agent, it turns out that there is no EIC merging operator satisfying (Ind-�). More precisely, the
property of independence to rationalization by update is not compatible with (IC2), which means
that every update-based rationalizing merging operator violates one of the most basic IC postulates.

PROPOSITION 4.7
There is no merging operator satisfying (IC2) and (Ind-�).

In this section we have shown that (i) the postulate (Ind) is consistent with all IC postulates
(Corollary 4.1); (ii) the postulate (Ind-◦) expresses a condition equivalent to (Ind) in the presence of
all IC postulates (Corollary 14); (iii) the postulate (Ind-�) is incompatible with one of the most basic
IC postulates (Proposition 4.7). For these reasons, we only focus on (Ind) in the rest of the paper.

5 Rationalization by expansion: a characterization result

Corollary 3.1 states that the set of EIC merging operators satisfying (Ind) is not empty, by
showing that ΔdD,� belongs to it. A key question is then to determine what are exactly the IC
merging operators (not necessarily distance-based ones) satisfying (Ind). In the following, we give a
representation theorem which answers this question. This requires a notion of filtering assignments,
considering the conditions 0–6 of an extended syncretic assignment together with an additional
condition.

DEFINITION 5.1 (Filtering assignment).
A filtering assignment is an extended syncretic assignment satisfying the following condition, for
every belief base ϕ1, ϕ2:

(F) If I <ϕ1 J and J <ϕ2 I , then I �〈ϕ1,ϕ2〉 J .

Condition (F) states that if a world is viewed as strictly more plausible than another world for a
singleton profile, and the plausibility ordering is reversed for another singleton profile, then these
worlds must be considered equally plausible with respect to the joint profile. Stated otherwise, when
condition (F) holds together with conditions (1) and (2) (cf. Definition 2.3), it is sufficient to compare
the plausibility of two distincts worlds I , J with respect to two singleton profiles 〈ϕ1〉, 〈ϕ2〉 in order
to determine the relative plausibility of I and J with respect to the doubleton profile 〈ϕ1, ϕ2〉.

Observe that condition (F) can be viewed as a stronger version of condition (4) (cf. Definition 2.3)
in the presence of conditions (1) and (2).
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1620 Belief base rationalization

PROPOSITION 5.1
Every mapping associating with every profile K a preorder ≤K over worlds and satisfying conditions
(1), (2) and (F) also satisfies condition (4).

Indeed, the additional constraint expressed by condition (F) with respect to condition (4) can
be illustrated as follows. Consider three pairwise distinct models I , Jand L and two belief bases
ϕ1 ≡ ϕ{I ,J} and ϕ2 ≡ ϕ{I ,L}. When (1) and (2) hold, we have I �ϕ1 J <ϕ1 L and I �ϕ2 L <ϕ2 J .
Targeting an equity behavior, condition (4) alone does not require J and L to be equally plausible
with respect to the profile 〈ϕ1, ϕ2〉: we could have for instance J <〈ϕ1,ϕ2〉 L. Contrastingly, in such a
case, condition (F) implies that J �〈ϕ1,ϕ2〉 L.

Now, the following proposition shows that through a filtering assignment, all the worlds are ranked
over a plausible ordering with at most two levels for any singleton profile 〈ϕ〉.
PROPOSITION 5.2
Every mapping associating with every profile K a preorder ≤K over worlds and satisfying conditions
(1), (2), (6) and (F) maps every singleton belief profile 〈ϕ〉 to a unique total preorder ≤ϕ over worlds
defined for all worlds I , J and every belief base ϕ as I <ϕ J if and only if I |	 ϕ and J �|	 ϕ.

Proposition 5.2 is a key result to prove the following stronger result on filtering assignments. Let
us denote |I(K)| = |{ϕi ∈ K | I |	 ϕi}|, i.e. the number of belief bases in K for which I is a model.
The following proposition holds.

PROPOSITION 5.3
Let ≤K be the preorder over worlds associated with a profile K by a filtering syncretic assignment.
We have I <K J iff |I(K)| > |J(K)|.

An important consequence of Proposition 5.3 is the following representation theorem for EIC
merging operators satisfying (Ind).

PROPOSITION 5.4
An EIC merging operator Δ satisfies (Ind) iff there exists a filtering syncretic assignment associating
every profile K with a total preorder ≤K such that for every formula μ, mod(Δμ(K)) =
min(mod(μ), ≤K).

Another consequence of Proposition 5.3 is given by the following corollary.

COROLLARY 5.1
There is only one filtering syncretic assignment.

Let us recall that given a profile K and a formula μ, Δ
dD,�
μ (K) is equivalent to any formula

whose models are models of μ which are models of a maximal number of bases from K. Then, as a
consequence of Corollaries 4.1 and 5.1 and Proposition 5.4, we get the following.

PROPOSITION 5.5
ΔdD,� is the only EIC merging operator satisfying (Ind).

This result gives a full axiomatic characterization of the EIC distance-based operator ΔdD,� in
terms of independence to rationalization, or equivalently speaking, it shows that ΔdD,� is the only
EIC merging operator which is also an expansion/revision-based rationalizing one.

Before concluding this section, let us point out an interesting relationship between
our independence postulate (Ind) and the independence of irrelevant alternatives postulate
(ESF-I) recently introduced in [7] when merging epistemic states. Postulate (ESF-I) requires
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Belief base rationalization 1621

the merging process to depend only on how the restrictions in the individual epistemic states
are related. Though this postulate is stated in the case where the input profile consists of
epistemic states (instead of propositional formulae), it puts conditions on the most ‘entrenched
beliefs’ of the underlying epistemic states, and thus can be easily rephrased in our framework
as follows.

DEFINITION 5.2 ((ESF-I) [7]).
A merging operator Δ satisfies (ESF-I) iff or all profiles K = 〈ϕ1, . . . , ϕn〉, K′ = 〈ϕ′

1, . . . , ϕ′
n〉 and

for every formula μ, if for every formula μ′ such that μ′ |	 μ we have that ϕi ◦Δ μ′ ≡ ϕ′
i ◦Δ μ′ for

each i ∈ {1, . . . , n}, then we also have Δμ(K) ≡ Δμ(K′).

PROPOSITION 5.6
Any extended distance-based merging operator Δd,� satisfies (ESF-I).

This shows that

- any EIC merging operator satisfying (Ind) also satisfies (ESF-I), since ΔdD,� is the only EIC
merging operator satisfying (Ind) (cf. Corollary 21), and since it also satisfies (ESF-I) (cf.
Proposition 5.6);

- the converse does not hold, since the EIC distance-based merging operator ΔdH ,� does not
satisfy (Ind) but satisfies (ESF-I) (cf. Proposition 5.6).

As a consequence, (ESF-I) is strictly less demanding than (Ind) for EIC merging operators.

6 Conclusion

In this paper, we have studied the case when belief bases are rationalized with respect to the integrity
constraint during the merging process. Such a rationalization is expected in scenarios for which
some IC merging operators can lead to unexpected merged bases because they give too much
credit to infeasible worlds. This is especially important when the integrity constraint encodes strong
constraints such as physical laws. In particular, when the propositional formulae are obtained via
a translation from representations coming from a more expressive framework (such as qualitative
temporal or spatial settings), the integrity constraint must be used to rule out infeasible worlds (the
worlds created during the translation process) [5].

We have defined in formal terms several independence conditions for merging operators and
studied how they interact with the standard IC postulates for belief merging. Especially, since
rationalization by expansion may lead to inconsistent bases, we have extended the IC postulates with
a new axiom (Inc) which constrains the behavior of merging operators applied to profiles consisting
of inconsistent bases; we gave a representation theorem for the augmented set of postulates, called
EIC, where the p-consistency condition on the profiles is relaxed. Then, we have shown that
rationalization by update is impossible for EIC operators, since this independence property conflicts
with some basic IC postulates. We have also shown that independence to rationalization by revision
is equivalent to independence to rationalization by expansion for EIC operators. Finally, we have
proven that there is a unique EIC operator satisfying the independence property to rationalization
by expansion (or equivalently, by revision), namely the distance-based operator ΔdD,� , where the
drastic distance dD and sum as aggregation function are used.

In [18] Marquis and Schwind provided an alternative axiomatic characterization of the distance-
based merging operator ΔdD,� in terms of language independence. They showed that ΔdD,� is
the only IC merging operator Δ for which, whenever the representation language is modified
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1622 Belief base rationalization

in such a way that symbols in the original language correspond to formulae in the target
language, if the input of Δ is modified so as to reflect the language change, then the output of
Δ should be modified accordingly. In their framework, language change is modeled by symbol
translations (i.e. substitutions) and language independence for a merging operator is its ability
to be robust with respect to symbol translations. It is interesting to note that ΔdD,� is the
only operator that fits these problems of rationalization and of independence of the choice of
propositional language. So an interesting question is to determine whether these two notions are more
deeply linked.
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Appendix: Proofs

We introduce a few notations that are used in some proofs for convenience. Given a formula μ and
a profile K = 〈ϕ1, . . . , ϕn〉,

• Kμ denotes the (possibly empty) vector formed of the bases from the profile K, which are
consistent with μ, listed in the same order;

• K∧μ denotes the profile K∧μ = 〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉;
• K∧μ

μ is a shortcut for (K∧μ)μ;

• K◦Dμ denotes the profile K◦Dμ = 〈ϕ1 ◦D μ, . . . , ϕn ◦D μ〉, where ◦D is the drastic revision
operator.

For instance, if μ = a ∧ b and K = 〈a, ¬a ∨ ¬b, b〉, then Kμ = 〈a, b〉, K∧μ = 〈a ∧ b, ⊥, a ∧ b〉,
K∧μ

μ = 〈a ∧ b, a ∧ b〉 and K◦Dμ = 〈a ∧ b, a ∧ b, a ∧ b〉.
PROPOSITION A.1
Let Δ be an extended merging operator satisfying (Inc), (IC0), (IC1), (IC5) and (IC6). Then for
every profile K, for every formula μ and for every m ≥ 0,

Δμ(K 
 〈⊥〉m) ≡ Δμ(K).

PROOF. Let Δ be a merging operator satisfying (Inc), (IC0), (IC1), (IC5) and (IC6). Let K be a
profile, μ be a formula and assume that μ is consistent (if μ is inconsistent, then the proof trivially
follows from (IC0)). By (Inc) we have Δμ(〈⊥〉m) ≡ μ. Yet, by (IC0) we have Δμ(K) |	 μ. Hence,
Δμ(K) ∧ Δμ(〈⊥〉m) ≡ Δμ(K), which is consistent by (IC1). Then by (IC5) and (IC6), we get
Δμ(K) ∧ Δμ(〈⊥〉m) ≡ Δμ(K 
 〈⊥〉m). Hence, Δμ(K 
 〈⊥〉m) ≡ Δμ(K). �
PROPOSITION A.2
An extended merging operator Δ is an EIC merging operator iff there exists an extended syncretic
assignment associating every profile K with a total preorder ≤K such that for every formula μ,
mod(Δμ(K)) = min(mod(μ), ≤K).

PROOF. (Only If) Let Δ be an EIC merging operator. Let us consider the assignment mapping every
profile K to a binary relation ≤K over worlds, defined for all worlds I , J as I ≤K J iff I |	 Δϕ{I ,J}(K).
The proof of Theorem 11 from [15] can be directly adapted to profiles here to show that ≤K is a total
preorder, that mod(Δμ(K)) = min(mod(μ), ≤K), and that it satisfies conditions 1–6 of a syncretic
assignment. And by (Inc), for all worlds I , J , we have Δϕ{I ,J}(〈⊥〉n) ≡ ϕ{I ,J}, so I �〈⊥〉n J . Hence,
condition 0 of an extended syncretic assignment (cf. Definition 3.3) is satisfied. (If) Consider an
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1624 Belief base rationalization

extended syncretic assignment mapping every profile K to a preorder ≤K over worlds, and define
the extended merging operator Δ by mod(Δμ(K)) = min(mod(μ), ≤K), for every profile K and
every formula μ. One can directly adapt the proof of Theorem 11 from [15] to show that Δ satisfies
(IC0–IC8). Yet by (IC0) we have Δμ(〈⊥〉n) |	 μ, and by condition 0 of an extended syncretic
assignment and by definition of Δ, we have that for every world I |	 μ, I |	 Δμ(〈⊥〉n). Hence, Δ

satisfies (Inc). Therefore, Δ is an EIC merging operator. �

PROPOSITION A.3
Let Δ be a merging operator and Δ′ its canonical extension. Then Δ′ satisfies (Inc), and for x ∈
{0, . . . , 8}, if Δ satisfies (ICx) then Δ′ satisfies (ICx).

PROOF. The proof is obvious; the fact that the canonical extension Δ′ of a merging operator satisfies
(Inc) each one of the IC postulates can be verified by definition of Δ′. �

PROPOSITION A.4
Let ΔE[Δ] be the expansion-based rationalizing operator induced by Δ. For x ∈ {0, . . . , 6}, if Δ

satisfies (ICx) then ΔE[Δ] satisfies (ICx). This is not true in the general case for x ∈ {7, 8}.

PROOF. Let ΔE be an expansion-based rationalizing merging operator and Δ be its characterizing
merging operator. In the following, K denotes any p-consistent profile 〈ϕ1, . . . , ϕn〉, μ is any formula,
ϕ1, ϕ2 are two consistent bases such that ϕ1 |	 μ and ϕ2 |	 μ and K∧μ denotes the profile 〈ϕ1 ∧
μ, . . . , ϕn ∧ μ〉. Assume Δ satisfies

- (IC0): then ΔE
μ(K) ≡ Δμ(K∧μ), and Δμ(K∧μ) |	 μ by (IC0), so ΔE also satisfies (IC0).

- (IC1): assume μ is consistent. Then ΔE
μ(K) ≡ Δμ(K∧μ), which is consistent by (IC1), so ΔE

also satisfies (IC1).
- (IC2): assume K ∧ μ is consistent. Then ΔE

μ(K) ≡ Δμ(K∧μ). Yet K∧μ ∧ μ ≡ K ∧ μ, thus
K∧μ∧μ is consistent, so by (IC2) Δμ(K∧μ) ≡ K∧μ∧μ ≡ K∧μ. We get that ΔE

μ(K) ≡ K∧μ,
so ΔE also satisfies (IC2).

- (IC3): since K1 ≡ K2, we have K∧μ
1 ≡ K∧μ

2 , from which it follows that ΔE also satisfies
(IC3).

- (IC4): since ϕ1 |	 μ and ϕ2 |	 μ, we have ΔE
μ(〈ϕ1, ϕ2〉) ≡ Δμ(〈ϕ1, ϕ2〉), so ΔE also satisfies

(IC4).
- (ICx), x ∈ {5, 6}: we have ΔE

μ(K1) ∧ ΔE
μ(K2) ≡ Δμ(K∧μ

1 ) ∧ Δμ(K∧μ
2 ), and ΔE

μ(K1 
 K2) ≡
Δμ(K∧μ

1 
 K∧μ
2 ). Hence, since Δ satisfies (ICx), ΔE also satisfies (ICx).

The following example shows that (IC7) (respectively, (IC8)) is not necessarily satisfied by ΔE even
if Δ satisfies it. Let ΔdH ,� be the merging operator based on the Hamming distance and the sum
function, and let ΔE be the expansion-based rationalizing merging operator it characterizes. We
know that ΔdH ,� satisfies (IC7) and (IC8) (see [15, Theorem 20]). Let μ1 = �, μ2 = a ∨ b and
ϕ1 = ¬a;

• Let ϕ2 = a. On the one hand, ΔE
μ1

(〈ϕ1, ϕ2〉) ≡ ΔE�(〈¬a, a〉) ≡ Δ
dH ,�
� (〈¬a, a〉) ≡ �,

so ΔE
μ1

(〈ϕ1, ϕ2〉) ∧ μ2 ≡ a ∨ b. On the other hand, ΔE
μ1∧μ2

(〈ϕ1, ϕ2〉) ≡ ΔE
a∨b(〈¬a, a〉) ≡

Δ
dH ,�
a∨b (〈¬a∧(a∨b), a∧(a∨b)〉) ≡ Δ

dH ,�
a∨b (〈¬a∧b, a〉) ≡ b. So we get that ΔE

μ1
(〈ϕ1, ϕ2〉)∧μ2 �|	

ΔE
μ1∧μ2

(〈ϕ1, ϕ2〉), which means that ΔE does not satisfy (IC7).
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Belief base rationalization 1625

• Let ϕ2 = a ∧ ¬b. One the one hand, ΔE
μ1

(〈ϕ1, ϕ2〉) ≡ ΔE�(〈¬a, a ∧ ¬b〉) ≡ Δ
dH ,�
� (〈¬a, a ∧

¬b〉) ≡ ¬b, so ΔE
μ1

(〈ϕ1, ϕ2〉) ∧ μ2 ≡ a ∧ ¬b. On the other hand, ΔE
μ1∧μ2

(〈ϕ1, ϕ2〉) ≡
ΔE

a∨b(〈¬a ∧ (a ∨ b), a ∧ ¬b ∧ (a ∨ b)〉) ≡ Δ
dH ,�
a∨b (〈¬a ∧ b, a ∧ ¬b〉) ≡ a ∨ b. So we get

that ΔE
μ1

(〈ϕ1, ϕ2〉) ∧ μ2 is consistent, and ΔE
μ1∧μ2

(〈ϕ1, ϕ2〉) �|	 ΔE
μ1

(〈ϕ1, ϕ2〉) ∧ μ2, which
means that ΔE does not satisfy (IC8). �

PROPOSITION A.5
For any aggregation function f which satisfies (symmetry), (composition) and (decomposition),
ΔdD,f is an expansion-based rationalizing merging operator, induced by itself.

PROOF. We use the notations introduced at the beginning of this appendix.
Let f be an aggregation function which satisfies (symmetry), (composition) and (decomposition).

We need to prove that ΔdD,f is an expansion-based rationalizing merging operator induced
by itself, i.e. that for every formula μ and every p-consistent profile K, Δ

dD,f
μ (K) ≡

Δ
dD,f
μ (K∧μ). Let μ be a formula and K be a profile. According to Definition 2.4 we need

to prove that for all worlds I , J |	 μ, fϕ∈K(dD(I , ϕ)) ≤ fϕ∈K(dD(J , ϕ)) if and only if
fϕ∈K∧μ(dD(I , ϕ)) ≤ fϕ∈K∧μ(dD(J , ϕ)).

Let I , J be two worlds such that I , J |	 μ. For every base ϕ such that ϕ ∧ μ is inconsistent,
we have that I , J �|	 ϕ, thus dD(I , ϕ) = dD(J , ϕ) = 1. Hence, by (symmetry), (composition) and
(decomposition) of f , we get that

fϕ∈K(dD(I , ϕ)) ≤ fϕ∈K(dD(J , ϕ)) if and only if
fϕ∈Kμ

(dD(I , ϕ)) ≤ fϕ∈Kμ
(dD(J , ϕ)).

(A.2)

Note that every base ϕ from Kμ is consistent with μ, i.e. ϕ ∧ μ is consistent. Moreover, for any
world L |	 μ and every base ϕ such that ϕ ∧ μ is consistent we have that

• if L |	 ϕ, then L |	 ϕ ∧ μ, so dD(L, ϕ) = dD(L, ϕ ∧ μ) = 0;
• if L �|	 ϕ, then L �|	 ϕ ∧ μ, so dD(L, ϕ) = dD(L, ϕ ∧ μ) = 1.

Yet I , J |	 μ, so for every base ϕ such that ϕ ∧ μ is consistent we have that dD(I , ϕ) =
dD(I , ϕ ∧ μ) and dD(J , ϕ) = dD(J , ϕ ∧ μ). This means that fϕ∈Kμ

(dD(I , ϕ)) = f
ϕ∈K∧μ

μ
(dD(I , ϕ))

and fϕ∈Kμ
(dD(J , ϕ)) = f

ϕ∈K∧μ
μ

( dD(J , ϕ)). Hence, we get that

fϕ∈Kμ
(dD(I , ϕ)) ≤ fϕ∈Kμ

(dD(J , ϕ)) if and only if
f
ϕ∈K∧μ

μ
(dD(I , ϕ)) ≤ f

ϕ∈K∧μ
μ

(dD(J , ϕ)). (A.3)

Now, for every inconsistent base ϕ we have dD(I , ϕ) = dD(J , ϕ) = e. So by (symmetry),
(composition) and (decomposition) of f , we get that

f
ϕ∈K∧μ

μ
(dD(I , ϕ)) ≤ f

ϕ∈K∧μ
μ

(dD(J , ϕ)) if and only if

fϕ∈K∧μ(dD(I , ϕ)) ≤ fϕ∈K∧μ(dD(J , ϕ)).
(A.4)

Equations A.2–A.4 together show that fϕ∈K(dD(I , ϕ)) ≤ fϕ∈K(dD(J , ϕ)) if and only if

fϕ∈K∧μ(dD(I , ϕ)) ≤ fϕ∈K∧μ(dD(J , ϕ)), from which we can conclude that Δ
dD,f
μ (K) ≡ Δ

dD,f
μ (K∧μ).

Therefore, ΔdD,f is an expansion-based rationalizing merging operator induced by itself. �
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1626 Belief base rationalization

PROPOSITION A.6
For any aggregation function f which satisfies (symmetry), (composition) and (decomposition),
ΔdD,f is a revision-based rationalizing merging operator, induced by itself and 〈◦1, . . . , ◦n〉 with
◦1 = · · · = ◦n = ◦D, where ◦D is the drastic (KM) revision operator.

PROOF. We use the notations introduced at the beginning of this appendix.
Let f be an aggregation function which satisfies (symmetry), (composition) and (decomposition).

Let us prove that ΔdD,f satisfies (Ind-◦). We need to show that one can associate with each
agent i a KM revision operator ◦i such that for every formula μ and every profile 〈ϕ1, . . . , ϕn〉,
Δμ(〈ϕ1, . . . , ϕn〉) ≡ Δμ(〈ϕ1 ◦1 μ, . . . , ϕn ◦n μ〉). Let us set ◦1 = · · · = ◦n = ◦D, the drastic
revision operator, let μ be a formula and K be a profile. According to Definition 2.4 we need to prove
that for all worlds I , J |	 μ, fϕ∈K(dD(I , ϕ)) ≤ fϕ∈K(dD(J , ϕ)) if and only if f

ϕ∈K◦Dμ(dD(I , ϕ)) ≤
f
ϕ∈K◦Dμ(dD(J , ϕ)). Let I , J be two worlds such that I , J |	 μ. Note that Equations A.2 and

A.3 from the proof of Proposition 3.5 can be identically proved, so we only need to show that
f
ϕ∈K∧μ

μ
(dD(I , ϕ)) ≤ f

ϕ∈K∧μ
μ

(dD(J , ϕ)) if and only if f
ϕ∈K◦Dμ(dD(I , ϕ)) ≤ f

ϕ∈K◦Dμ(dD(J , ϕ)). Yet

one can easily verify that the profile K◦D,μ consists of bases from the profile K∧μ
μ and an arbitrary

number of bases equal to μ. And since I , J |	 μ, we have that dD(I , μ) = dD(J , μ) = 0. So by
(symmetry), (composition) and (decomposition) of f , we get that

f
ϕ∈K∧μ

μ
(dD(I , ϕ)) ≤ f

ϕ∈K∧μ
μ

(dD(J , ϕ)) if and only if

f
ϕ∈K◦Dμ(dD(I , ϕ)) ≤ f

ϕ∈K◦Dμ(dD(J , ϕ)).
(A.5)

Equations A.2 and A.3 from the proof of Proposition 3.5, together with Equation A.5 above show
that fϕ∈K(dD(I , ϕ)) ≤ fϕ∈K(dD(J , ϕ)) if and only if f

ϕ∈K◦Dμ(dD(I , ϕ)) ≤ f
ϕ∈K◦Dμ(dD(J , ϕ)), from

which we can conclude that Δ
dD,f
μ (K) ≡ Δ

dD,f
μ (K◦Dμ). Therefore, ΔdD,f satisfies (Ind-◦). �

PROPOSITION A.7
Let ΔR be a revision-based rationalizing merging operator induced by Δ and ◦1, . . . , ◦n. For x ∈
{0, . . . , 6}, if Δ satisfies (ICx) then ΔR satisfies (ICx). This is not true in the general case for x ∈
{7, 8}.
PROOF. We use the notations introduced at the beginning of this appendix.

Let ΔR be a revision-based rationalizing merging operator, induced by and Δ and 〈◦1, . . . , ◦n〉. In
the following, K denotes any p-consistent profile 〈ϕ1, . . . , ϕn〉, μ is any formula and ϕ1, ϕ2 are two
consistent bases such that ϕ1 |	 μ and ϕ2 |	 μ, K∧μ denotes the profile 〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉 and
K◦μ denotes the profile 〈K1 ◦1 μ, . . . , Kn ◦n μ〉. Assume Δ satisfies

- (IC0): ΔR
μ(K) ≡ Δμ(〈K1 ◦1 μ, . . . , Kn ◦n μ〉), and Δμ(〈K1 ◦1 μ, . . . , Kn ◦n μ〉) |	 μ by (IC0),

so ΔR also satisfies (IC0).
- (IC1): assume μ is consistent. We have ΔR

μ(K) ≡ Δμ(〈K1 ◦1 μ, . . . , Kn ◦n μ〉), which is
consistent by (IC1), so ΔR also satisfies (IC1).

- (IC2): assume
∧

K ∧ μ is consistent. This means that for each agent i, ϕi ∧ μ is consistent.
Since each revision operator ◦i satisfies (R2), we have ϕi ◦i μ ≡ ϕi ∧ μ for each agent i. So
ΔR

μ(K) ≡ Δμ(〈K1 ◦1 μ, . . . , Kn ◦n μ〉) ≡ Δμ(K∧μ). On the other hand,
∧

K∧μ ≡ ∧
K ∧ μ,

thus
∧

K∧μ is consistent. Hence, by (IC2) Δμ(K∧μ) ≡ ∧
K∧μ ≡ ∧

K ∧ μ. We get that
ΔR

μ(K) ≡ ∧
K ∧ μ, so ΔR also satisfies (IC2).
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Belief base rationalization 1627

- (IC3): we have K1 ≡ K2, yet each revision operator ◦i satisfies (R4), so K◦μ
1 ≡ K◦μ

2 , from
which it follows that ΔR also satisfies (IC3).

- (IC4): for every agent i, every revision operator ◦i satisfies (R2), so ϕi |	 μ implies ϕi ◦i μ ≡
ϕi ∧ μ ≡ ϕi. Hence, since ϕ1 |	 μ and ϕ2 |	 μ, we have that ΔR

μ(〈ϕ1, ϕ2〉) ≡ Δμ(〈ϕ1 ◦1

μ, ϕ2 ◦2 μ〉) ≡ Δμ(〈ϕ1, ϕ2〉), so ΔR also satisfies (IC4).
- (ICx), x ∈ {5, 6}: we have ΔR

μ(K1) ∧ ΔR
μ(K2) ≡ Δμ(K◦μ

1 ) ∧ Δμ(K◦μ
2 ), and ΔR

μ(K1 
 K2) ≡
Δμ(K◦μ

1 
 K◦μ
2 ). Hence, since Δ satisfies (ICx), ΔR also satisfies (ICx).

The example introduced in the proof of Proposition 3.4—which shows that (IC7) (respectively,
(IC8)) is not necessarily satisfied by ΔE even if Δ satisfies it—can also be used here to show that
(IC7) (respectively, (IC8)) is not necessarily satisfied by ΔR even if Δ satisfies it, with the following
settings: consider again ΔdH ,� be the merging operator based on the Hamming distance and the
sum function, and additionally define ◦1 = · · · = ◦n = ◦D, where ◦D is the drastic (KM) revision
operator; then let ΔR be the revision-based rationalizing merging operator induced by ΔdH ,� and
〈◦1, . . . , ◦n〉. Let μ1 = �, μ2 = a ∨ b and ϕ1 = ¬a. Then, one can easily verify that ϕ2 = a (resp.
ϕ2 = a ∧ ¬b) provides a counter-example for (IC7) (resp. (IC8)). �
PROPOSITION A.8
Let ΔU be an update-based rationalizing merging operator induced by Δ and �1, . . . , �n. For x ∈
{0, 1, 3, 4, 5, 6}, if Δ satisfies (ICx) then ΔU satisfies (ICx). This is not true in the general case for
x ∈ {2, 7, 8}.
PROOF. Let ΔU be an update-based rationalizing merging operator, induced by and Δ and
〈�1, . . . , �n〉. We use the notations introduced at the beginning of this appendix, and in addition,
K�μ denotes the profile 〈K1 �1 μ, . . . , Kn �n μ〉. In the following, K denotes any p-consistent profile
〈ϕ1, . . . , ϕn〉, μ is any formula and ϕ1, ϕ2 are two consistent bases such that ϕ1 |	 μ and ϕ2 |	 μ.

Assume Δ satisfies

- (IC0): ΔU
μ (K) ≡ Δμ(〈K1 �1 μ, . . . , Kn �n μ〉), and Δμ(〈K1 �1 μ, . . . , Kn �n μ〉) |	 μ by (IC0),

so ΔU also satisfies (IC0).
- (IC1): assume μ is consistent. We have ΔU

μ (K) ≡ Δμ(〈K1 �1 μ, . . . , Kn �n μ〉), which is
consistent by (IC1), so ΔU also satisfies (IC1).

- (IC3): we have K1 ≡ K2, yet each update operator �i satisfies (U4), so K�μ
1 ≡ K�μ

2 , from
which it follows that ΔU also satisfies (IC3).

- (IC4): for every agent i, every update operator �i satisfies (U2), so ϕi |	 μ implies ϕi �i μ ≡
ϕi ∧ μ ≡ ϕi. Hence, since ϕ1 |	 μ and ϕ2 |	 μ, we have that ΔU

μ (〈ϕ1, ϕ2〉) ≡ Δμ(〈ϕ1 �1

μ, ϕ2 �2 μ〉) ≡ Δμ(〈ϕ1, ϕ2〉), so ΔU also satisfies (IC4).
- (ICx), x ∈ {5, 6}: we have ΔU

μ (K1) ∧ ΔU
μ (K2) ≡ Δμ(K�μ

1 ) ∧ Δμ(K�μ
2 ), and ΔU

μ (K1 
 K2) ≡
Δμ(K�μ

1 
 K�μ
2 ). Hence, since Δ satisfies (ICx), ΔU also satisfies (ICx).

The following example shows that (IC2) is not necessarily satisfied by ΔU even if Δ satisfies it. Let
Δ be any merging operator satisfying (IC2), and let �1 = · · · = �n = �D, where �D is the drastic
(KM) update operator defined as

ϕ �D μ =
{

ϕ if ϕ |	 μ,
μ otherwise.

Let ΔU be the update-based rationalizing merging operator induced by Δ and 〈�1, . . . , �n〉. We
have ΔU

a (〈b〉) ≡ Δa(〈b �D a〉) ≡ Δa(〈a〉), which is equivalent to a since Δ satisfies (IC2). So
ΔU

a (〈b〉) �≡ a ∧ b, which means that ΔU does not satisfy (IC2).
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1628 Belief base rationalization

The example introduced in the proof of Proposition 3.4—which shows that (IC7) (respectively,
(IC8)) is not necessarily satisfied by ΔE even if Δ satisfies it—can also be used here to show that
(IC7) (respectively, (IC8)) is not necessarily satisfied by ΔU even if Δ satisfies it, with the following
settings: consider again ΔdH ,� be the merging operator based on the Hamming distance and the sum
function, and additionally define �1 = · · · = �n = �D, where �D is the drastic (KM) update operator
defined as above; then let ΔU be the update-based rationalizing merging operator induced by ΔdH ,�

and 〈◦1, . . . , ◦n〉. Let μ1 = �, μ2 = a ∨ b and ϕ1 = ¬a. Then, one can easily verify that setting
ϕ2 = a (resp. ϕ2 = a ∧ ¬b) provides a counter-example for (IC7) (resp. (IC8)). �
PROPOSITION A.9
If Δ is a merging operator satisfying (IC3), then Δ satisfies (Ind) if and only if Δ satisfies (IIA).

PROOF. Let Δ be a merging operator satisfying (IC3). (If) Assume that Δ satisfies (IIA). Let
ϕ1, . . . , ϕn be n belief bases and μ be a formula. We have 〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉 ≡ 〈ϕ1 ∧ μ ∧
μ, . . . , ϕn ∧ μ ∧ μ〉. From (IIA) we get Δμ(〈ϕ1, . . . , ϕn〉) ≡ Δμ(〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉). Hence,
Δ satisfies (Ind). (Only If) Assume that Δ satisfies (Ind). Let ϕ1, . . . , ϕn, ϕ′

1, . . . , ϕ′
n be 2n belief

bases, μ be a formula, and assume that 〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉 ≡ 〈ϕ′
1 ∧ μ, . . . , ϕ′

n ∧ μ〉. From
(IC3) we get that Δμ(〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉) ≡ Δμ(〈ϕ′

1 ∧ μ, . . . , ϕ′
n ∧ μ〉). Yet from (Ind) we have

Δμ(〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉) ≡ Δμ(〈ϕ1, . . . , ϕn〉) and Δμ(〈ϕ′
1 ∧ μ, . . . , ϕ′

n ∧ μ〉) ≡ Δμ(〈ϕ′
1, . . . , ϕ′

n〉).
Hence, Δμ(〈ϕ1, . . . , ϕn〉) ≡ Δμ(〈ϕ′

1, . . . , ϕ′
n〉). Therefore, Δ satisfies (IIA). �

PROPOSITION A.10
Let Δ be a merging operator satisfying (IC3). If Δ is an expansion-based rationalizing merging
operator, then it satisfies (Ind).

PROOF. Let Δ be a merging operator satisfying (IC3). Let us assume that Δ is an expansion-based
rationalizing merging operator and let us show that it satisfies (Ind). What we need to prove is that
for every formula μ and every profile 〈ϕ1, . . . , ϕn〉, Δμ(〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉) ≡ Δμ(〈ϕ1, . . . , ϕn〉).
Yet Δ is induced by a merging operator Δ′, so for every formula μ and every profile 〈ϕ1, . . . , ϕn〉,
Δμ(〈ϕ1, . . . , ϕn〉) ≡ Δ′

μ(〈ϕ1 ∧μ, . . . , ϕn ∧μ〉). Let μ be a formula and 〈ϕ1, . . . , ϕn〉 be a profile. We
have

Δμ(〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉) ≡ Δ′
μ(〈ϕ1 ∧ μ ∧ μ, . . . , ϕn ∧ μ ∧ μ〉)

≡ Δ′
μ(〈ϕ1 ∧ μ, . . . , ϕn ∧ μ〉)

≡ Δμ(〈ϕ1, . . . , ϕn〉).
This concludes the proof. �
PROPOSITION A.11
Let Δ be a merging operator satisfying (IC3). If Δ is a revision-based rationalizing merging operator,
then it satisfies (Ind-◦).

PROOF. Let us first emphasize an intermediate result. Let ϕ be a base, μ be a formula and ◦ be a
revision operator satisfying (R1) and (R2). By (R1) ϕ ◦ μ |	 μ. Since (ϕ ◦ μ) ∧ μ is consistent, by
(R2) (ϕ ◦ μ) ◦ μ ≡ (ϕ ◦ μ) ∧ μ ≡ ϕ ◦ μ. That is,

(ϕ ◦ μ) ◦ μ ≡ ϕ ◦ μ. (A.6)

Now, let Δ be a merging operator satisfying (IC3). Let us assume that Δ is a revision-based
rationalizing merging operator and let us show that it satisfies (Ind-◦). What we need to prove is
that one can associate with each agent i a KM revision operator ◦i such that for every formula μ

and every profile 〈ϕ1, . . . , ϕn〉, Δμ(〈ϕ1 ◦1 μ, . . . , ϕn ◦n μ〉) ≡ Δμ(〈ϕ1, . . . , ϕn〉). Yet Δ is induced
by a merging operator Δ′ and 〈◦1, . . . , ◦n〉, where each ◦i is a KM revision operator. So for every
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Belief base rationalization 1629

formula μ and every profile 〈ϕ1, . . . , ϕn〉, Δμ(〈ϕ1, . . . , ϕn〉) ≡ Δ′
μ(〈ϕ1 ◦1 μ, . . . , ϕn ◦n μ〉). Let μ be

a formula and 〈ϕ1, . . . , ϕn〉 be a profile. We have

Δμ(〈ϕ1 ◦1 μ, . . . , ϕn ◦n μ〉) ≡ Δ′
μ(〈(ϕ1 ◦1 μ) ◦1 μ, . . . , (ϕn ◦n μ) ◦n μ〉)

≡ Δ′
μ(〈ϕ1 ◦1 μ, . . . , ϕn ◦n μ〉) (from Equation A.6)

≡ Δμ(〈ϕ1, . . . , ϕn〉).

This concludes the proof. �
PROPOSITION A.12
Let Δ be a merging operator satisfying (IC2) and (Ind-◦). Then every revision operator ◦i considered
in (Ind-◦) is the revision operator ◦Δ corresponding to Δ in the sense of Definition 2.8.

PROOF. Let Δ be a merging operator satisfying (IC2) and (Ind-◦). This means that one can associate
with each agent i a KM revision operator ◦i such that for every formula μ and every profile
〈ϕ1, . . . , ϕn〉,

Δμ(〈ϕ1, . . . , ϕn〉) ≡ Δμ(〈ϕ1 ◦1 μ, . . . , ϕn ◦n μ〉). (A.7)

Let us first prove that for every KM revision operator ◦i involved in Equation A.7 above, we have
◦i = ◦Δ. Let ◦i be any revision operator involved in Equation 7, ϕ be a belief base and μ be a
formula. By (R1) we have ϕ ◦i μ |	 μ, so by (Ind-◦) and (IC2), we get Δμ(〈ϕ〉) ≡ Δμ(〈ϕ ◦i μ〉) ≡
ϕ ◦i μ. Hence, for every revision operator ◦i, we have ◦i = ◦Δ. �
PROPOSITION A.13
Let Δ be an EIC merging operator satisfying (Ind-◦). Then every revision operator ◦i is ◦D, the
drastic revision operator.

PROOF. Let Δ be an EIC merging operator satisfying (Ind-◦). From Proposition 4.5 we know
that every revision operator ◦i is ◦Δ, the revision operator corresponding to Δ. Let us prove that
◦Δ = ◦D, i.e. ◦Δ is the drastic revision operator. On the one hand, we know that the faithful
assignment associated with ◦Δ coincides with the syncretic assignment associated with Δ, restricted
to singleton profiles. So since Δ is an EIC merging operator, by Theorem 2.1 it corresponds to an
assignment satisfying conditions 1–6 (see Definition 2.3). On the other hand, ◦D corresponds to a
faithful assignment defined such that for all worlds I , J , L, if L /∈ {I , J} then I �ϕ{L} J . Towards a
contradiction, assume that ◦Δ �= ◦D. This means that there exist three distinct worlds I , J , L such
that (i) I <ϕ{I} J <ϕ{I} L, i.e. there exists a total preorder <ϕ{I} with at least 3 distinct levels. Let
ϕ ≡ ϕ{J ,L}. By conditions 1 and 2, we have (ii) J �ϕ L <ϕ I . Now

(a) By (i), we have J <ϕ{I} L and by (ii), we have J �ϕ L. Thus, by condition 6 of a syncretic
assignment, we get J <〈ϕ{I},ϕ〉 L.

(b) By (R2), ϕ ◦Δ ϕ{I ,J} ≡ ϕ{J}, and ϕ{I} ◦Δ ϕ{I ,J} ≡ ϕ{I}. Then by (Ind-◦), Δϕ{I ,J}(〈ϕ, ϕ{I}〉)
≡ Δϕ{I ,J}(〈ϕ{J}, ϕ{I}〉). Hence, by (IC0), (IC1) and (IC4), we get Δϕ{I ,J}(〈ϕ, ϕ{I}〉) ≡ ϕ{I ,J}. This
means that I �〈ϕ{I},ϕ〉 J .

(c) Using a similar reasoning as for (b) with L instead of J , we get I �〈ϕ{I},ϕ〉 L.

We have that (a), (b) and (c) together lead to a contradiction, which means that ◦Δ = ◦D. �
PROPOSITION A.14
Let Δ be an EIC merging operator. Δ satisfies (Ind) if and only if Δ satisfies (Ind-◦).
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1630 Belief base rationalization

PROOF. We use the notations introduced at the beginning of this appendix.
Let Δ be an EIC merging operator. Let us first prove that for every profile K, every formula

μ and all m ≥ 0, Δμ(K) ≡ Δμ(K 
 〈μ〉m). So let K be a profile, μ be a formula and let m ≥
0. If μ is inconsistent, then the proof trivially follows from Proposition 3.1. So assume that μ is
consistent. By (IC2) we have that Δμ(〈μ〉m) ≡ μ. Yet, by (IC0) we have Δμ(K) |	 μ. Hence,
Δμ(K) ∧ Δμ(〈μ〉m) ≡ Δμ(K), which is consistent by (IC1). Then by (IC5) and (IC6), we get
Δμ(K) ∧ Δμ(〈μ〉m) ≡ Δμ(K 
 〈μ〉m). Hence,

Δμ(K) ≡ Δμ(K 
 〈μ〉m). (A.8)

Now,

Δμ(K∧μ) ≡ Δμ(K∧μ
μ 
 〈⊥〉m) by (IC3)

≡ Δμ(K∧μ
μ ) from Proposition 1

≡ Δμ(K∧μ
μ 
 〈μ〉m) from Equation 8

≡ Δμ(K◦Dμ) by (IC3) and by definition of ◦D,

where m is the number of bases from K that are inconsistent with μ.
Hence, we get that Δ satisfies (Ind) if and only if for every profile K and every formula μ,

Δμ(K) ≡ Δμ(K∧μ) if and only if for every profile K and every formula μ, Δμ(K) ≡ Δμ(K◦Dμ) if
and only if Δ satisfies (Ind-◦).

This concludes the proof. �
PROPOSITION A.15
Let Δ be a merging operator satisfying (IC3). If Δ is an update-based rationalizing merging operator,
then it satisfies (Ind-�).

PROOF. Let us first emphasize an intermediate result. Let ϕ be a base, μ be a formula and � be an
update operator satisfying (U1) and (U2). By (U1) ϕ � μ |	 μ. So by (U2),

(ϕ � μ) � μ ≡ ϕ � μ. (A.9)

Now, let Δ be a merging operator satisfying (IC3). Let us assume that Δ is an update-based
rationalizing merging operator and let us show that it satisfies (Ind-�). What we need to prove is
that one can associate with each agent i a KM revision operator �i such that for every formula μ

and every profile 〈ϕ1, . . . , ϕn〉, Δμ(〈ϕ1 �1 μ, . . . , ϕn �n μ〉) ≡ Δμ(〈ϕ1, . . . , ϕn〉). Yet Δ is induced
by a merging operator Δ′ and 〈�1, . . . , �n〉, where each �i is a KM revision operator. So for every
formula μ and every profile 〈ϕ1, . . . , ϕn〉, Δμ(〈ϕ1, . . . , ϕn〉) ≡ Δ′

μ(〈ϕ1 �1 μ, . . . , ϕn �n μ〉). Let μ be
a formula and 〈ϕ1, . . . , ϕn〉 be a profile. We have

Δμ(〈ϕ1 �1 μ, . . . , ϕn �n μ〉) ≡ Δ′
μ(〈(ϕ1 �1 μ) �1 μ, . . . , (ϕn �n μ) �n μ〉)

≡ Δ′
μ(〈ϕ1 �1 μ, . . . , ϕn �n μ〉) (from Equation 9)

≡ Δμ(〈ϕ1, . . . , ϕn〉).
This concludes the proof. �
PROPOSITION A.16
There is no merging operator satisfying (IC2) and (Ind-�).

PROOF. Towards a contradiction, assume that there exists a merging operator Δ satisfying (IC2) and
(Ind-�). By (Ind-�) (cf. Definition 4.4) we can associate with every agent i a KM update operator �i
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Belief base rationalization 1631

such that for every profile 〈ϕ1, . . . , ϕn〉,

Δμ(〈ϕ1, . . . , ϕn〉) ≡ Δμ(〈ϕ1 �1 μ, . . . , ϕn �n μ〉). (A.10)

Let us first show that every KM update operator �i involved in Equation 10 above is the drastic
update operator, i.e. �i = �D, where the drastic update operator �D is defined for every belief base
ϕ and every formula μ as

ϕ �D μ =
{

ϕ if ϕ |	 μ,
μ otherwise.

According to Theorem 2.4, any KM update operator � corresponds to a faithful assignment
associating every world I with a preorder ≤ϕ{I} such that for every base ϕ and every formula μ,
mod(ϕ �μ) = ⋃

I|	ϕ min(mod(μ), ≤ϕ{I}). Then, one can first remark that the drastic update operator
�D corresponds to a faithful assignment defined such that for all distinct worlds I , J , L, I �≤ϕ{L} J
(and J �≤ϕ{L} I by symmetry). Indeed, if one would have that J <ϕ{L} I for some distinct worlds
I , J , L, then we would get by Theorem 2.4 that ϕ{L} �D ϕ{I ,J} ≡ ϕ{J}, which contradicts the definition
of �D.

So now we want to show that for every KM update operator �i involved in Equation 10
above, we have �i = �D. Towards a contradiction, assume that for some KM update operator
�i involved in Equation 10, �i is not the drastic update operator, i.e. �i �= �D. That is, we
assume that there exist three distinct worlds I , J , L such that J <

�i
ϕ{L} I . On the one hand, by

(U1), we have ϕ{L} �j ϕ{I ,J} |	 ϕ{I ,J}, and by (U3), ϕ{L} �j ϕ{I ,J} is consistent. Yet J <
�i
ϕ{L} I

by hypothesis, thus (i) ϕ{L} �i ϕ{I ,J} ≡ ϕ{J}. On the other hand, by (U2), we have (ii) ϕ{I} �i
ϕ{I ,J} ≡ ϕ{I}. Yet by (U8) we have ϕ{I ,L} �i ϕ{I ,J} ≡ (ϕ{I} �i ϕ{I ,J}) ∨ (ϕ{L} �i ϕ{I ,J}). Hence,
by (i) and (ii) we get that (iii) ϕ{I ,L} �i ϕ{I ,J} ≡ ϕ{I} ∨ ϕ{J} ≡ ϕ{I ,J}. Now, from (Ind-�) and
(iii) we get that (iv) Δϕ{I ,J}(〈ϕ{I ,L}〉) ≡ Δϕ{I ,J}(〈ϕ{I ,L} �i ϕ{I ,J}〉) ≡ Δϕ{I ,J}(〈ϕ{I ,J}〉). Yet by (IC2),
we get that Δϕ{I ,J}(〈ϕ{I ,L}〉) ≡ ϕ{I} and Δϕ{I ,J}(〈ϕ{I ,J}〉) ≡ ϕ{I ,J}, which contradicts (iv). This
proves that every KM update operator �i involved in Equation 10 above is the drastic update
operator �D.

Now, let I , J , L be three distinct worlds. On the one hand, Δϕ{I ,J}(〈ϕ{J ,L}〉) = ϕ{J} by (IC2). On the
other hand, Δϕ{I ,J}(〈ϕ{J ,L}�Dϕ{I ,J}〉), which is equivalent to Δϕ{I ,J}(〈ϕ{I ,J}〉) by definition of �D, which
is equivalent to ϕ{I ,J} by (IC2). Hence, we have that Δϕ{I ,J}(〈ϕ{J ,L}〉) �≡ Δϕ{I ,J}(〈ϕ{J ,L} �D ϕ{I ,J}〉). This
contradicts the initial assumption that Δ satisfies (Ind-�), from which we can conclude that there is
no merging operator Δ satisfying both (IC2) and (Ind-�). �
PROPOSITION A.17
Every mapping associating with every profile K a preorder ≤K over worlds and satisfying conditions
(1), (2) and (F) also satisfies condition (4).

PROOF. Consider a mapping associating with every profile K a preorder ≤K over worlds and
satisfying conditions (1), (2) and (F). We need to prove that condition (4) is satisfied, i.e. let ϕ1, ϕ2
be two consistent belief bases, let I be a world such that I |	 ϕ1 and let us prove that there exists a
world J such that J |	 ϕ2 and J ≤〈ϕ1,ϕ2〉 I . This is trivially true if I |	 ϕ2, so assume I �|	 ϕ2. Let J
be a world such that J |	 ϕ2. If J |	 ϕ1, then conditions 1 and 2 together imply that J <〈ϕ1,ϕ2〉 I , so
condition 4 is satisfied. Now, assume J �|	 ϕ1. Then conditions 1 and 2 together imply that I <ϕ1 J
and J <ϕ2 I . So by condition F, we get I �〈ϕ1,ϕ2〉 J , thus condition 4 is satisfied. �
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1632 Belief base rationalization

PROPOSITION A.18
Every mapping associating with every profile K a preorder ≤K over worlds and satisfying conditions
(1), (2), (6) and (F) maps every singleton belief profile 〈ϕ〉 to a unique total preorder ≤ϕ over worlds
defined for all worlds I , J and every belief base ϕ as I <ϕ J if and only if I |	 ϕ and J �|	 ϕ.

PROOF. (If) Direct from condition 2. (Only If) Let ϕ be a belief base. The result is trivial if ϕ in
inconsistent, so assume that ϕ is consistent. Let us first show that if I �|	 ϕ and J �|	 ϕ, then I �〈ϕ〉 J .
Let I �|	 ϕ, J �|	 ϕ and assume by contradiction that I <〈ϕ〉 J . Let L |	 ϕ. By condition 2 of a
syncretic assignement we have L <〈ϕ〉 J , J <ϕ{J} I and J <ϕ{J} L. Thus, by condition F we get
I �{ϕ,ϕ{J}} J and J �{ϕ,ϕ{J}} L. Thus, I �{ϕ,ϕ{J}} L. Since by condition 2, L <〈ϕ〉 I , then by condition
6 we get I <ϕ{J} L. Yet by conditions 1 and 2 we have I �ϕ{I ,L} L <ϕ{I ,L} J . Since J <ϕ{J} I ,
I <ϕ{I ,L} J , J <ϕ{J} L and L <ϕ{I ,L} J , by condition F we get I �{ϕ{J},ϕ{I ,L}} J and J �{ϕ{J},ϕ{I ,L}} L.
Thus, I �{ϕ{J},ϕ{I ,L}} L. But since I <ϕ{J} L and I �ϕ{I ,L} L, by condition 6 we get I <{ϕ{J},ϕ{I ,L}} L,
leading to a contradiction. Thus, we do not have I <〈ϕ〉 J . By a similar reasoning, we can prove that
we do not have J <〈ϕ〉 I either. Hence, we get

If I �|	 ϕ and J �|	 ϕ, then I �〈ϕ〉 J . (A.11)

In the case where I |	 ϕ and J |	 ϕ then by condition 1 we directly obtain I �〈ϕ〉 J . Now, let I , J
be two interpretations and assume that I <〈ϕ〉 J . We need to show that I |	 ϕ and J �|	 ϕ. Assume
towards a contradiction that I �|	 ϕ. If J |	 ϕ, then by condition 2 we get J <〈ϕ〉 I ; if J �|	 ϕ, then
by Equation 11 we get I �〈ϕ〉 J . Both cases contradict the assumption I <〈ϕ〉 J . Hence, we have
I |	 ϕ. Now, assume towards a contradiction that J |	 ϕ. By condition 1 we get that I �〈ϕ〉 J , which
contradicts the assumption I <〈ϕ〉 J . Hence, J �|	 ϕ. This concludes the proof. �
PROPOSITION A.19
Let ≤K be the preorder over worlds associated with a profile K by a filtering syncretic assignment.
We have

I <K J iff |I(K)| > |J(K)|.
We first prove the following lemma.

LEMMA A.1
Every assignment satisfying conditions 5 and F satisfies the following condition:

If I <K J , then I ≤K
〈ϕ〉 J .

PROOF. We prove it by recursion on the size n of K:
• Base case (n = 1): let I <〈ϕ〉 J . If I ≤〈ϕ′〉 J , then by condition 5 we get I ≤〈ϕ,ϕ′〉 J . If J <〈ϕ′〉 I ,

then by condition F we get I �〈ϕ,ϕ′〉 J .
• Let n ≥ 1 and assume that for every K such that |K| = n, we have I <K J ⇒ I ≤K
〈ϕ〉 J or

equivalently I <K
〈ϕ〉 J ⇒ I ≤K J . Let K be a profile such that |K| = n + 1 and assume I <K J . If
I ≤〈ϕ〉 J , then by condition 5 we get I ≤K
〈ϕ〉 J . Then assume J <〈ϕ〉 I . Since I <K J , by condition
5 there exists a belief base ϕ′ ∈ K such that I <〈ϕ′〉 J , and by the recursion hypothesis, we also get
I ≤K\〈ϕ′〉 J . Since J <〈ϕ〉 I and I <〈ϕ′〉 J , by condition F we get I �〈ϕ,ϕ′〉 J . Hence, by condition 5,
we get I ≤K
〈ϕ〉 J . �

We now prove Proposition 5.3.

PROOF. We prove the equivalence stated in Proposition 5.3 by recursion on the size n of K:
• Base case (n = 1) : by Proposition 5.2, I <〈ϕ〉 J iff I |	 ϕ and J �|	 ϕ, this leads directly to

|I(K)| > |J(K)|.
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• Base case (n = 2) : let us show that I <〈ϕ,ϕ′〉 J iff (I ≤〈ϕ〉 J and I <〈ϕ′〉 J ) or (I <〈ϕ〉 J and
I ≤〈ϕ′〉 J ). (Only If) Direct from condition 6. (If) Let I <〈ϕ,ϕ′〉 J . By contradiction, assume J <〈ϕ〉 I .
Assuming J ≤〈ϕ′〉 I (respectively I <〈ϕ′〉 J ) contradicts I <〈ϕ,ϕ′〉 J by condition 5 (respectively by
condition F). Hence, I ≤〈ϕ〉 J . In a symmetric way, we can show that I ≤〈ϕ′〉 J . Now, assuming
I �〈ϕ〉 J and I �〈ϕ′〉 J contradicts I <〈ϕ,ϕ′〉 J by condition 5. Hence, (I ≤〈ϕ〉 J and I <〈ϕ′〉 J ) or
(I <〈ϕ〉 J and I ≤〈ϕ′〉 J ). Since we deal with singleton profiles (|〈ϕ〉| = |〈ϕ′〉| = 1), we can apply
Proposition 5.2 and directly get |I(〈ϕ, ϕ′〉)| > |J(〈ϕ, ϕ′〉)|.

• Let n ≥ 2 and assume that for every profile K, |K| = k, k ≤ n, we have I <K J iff |I(K)| >

|J(K)|. Let K be a profile such that |K| = n + 1. We need to show that I <K J iff |I(K)| > |J(K)|.
Assume first that I <K J and let us show that |I(K)| > |J(K)|. Let ϕ ∈ K:

- Assume I <〈ϕ〉 J . Since I <K J , then by Lemma A.1 we have I ≤K\〈ϕ〉 J . By recursion
hypothesis, we have |I(〈ϕ〉)| > |J(〈ϕ〉)| and |I(K \ 〈ϕ〉)| ≥ |J(K \ 〈ϕ〉)|. Hence, |I(K)| >

|J(K)|.
- Assume I �〈ϕ〉 J . Since I <K J , then by condition 5, we have I <K\〈ϕ〉 J . By recursion

hypothesis, we have |I(〈ϕ〉)| = |J(〈ϕ〉)| and |I(K \ 〈ϕ〉)| > |J(K \ 〈ϕ〉)|. Hence, |I(K)| >

|J(K)|.
- Assume J <〈ϕ〉 I . Since I <K J , then by condition 5 there exists a belief base ϕ′ ∈ K

such that I <〈ϕ′〉 J . By condition F, we get I �〈ϕ,ϕ′〉 J . And by condition 5, we have
necessarily I <K\〈ϕ,ϕ′〉 J . By recursion hypothesis, we have |I(〈ϕ, ϕ′〉)| = |J(〈ϕ, ϕ′〉)| and
|I(K \ 〈ϕ, ϕ′〉)| > |J(K \ 〈ϕ, ϕ′〉)|. Hence, |I(K)| > |J(K)|.

Assume now that |I(K)| > |J(K)| and let us show that I <K J . By hypothesis, there exists a
belief base ϕ ∈ K such that I |	 ϕ and J �|	 ϕ, so by condition 2 I <〈ϕ〉 J . We get |I(K \ 〈ϕ〉)| ≥
|J(K\〈ϕ〉)|, and by recursion hypothesis, I ≤K\〈ϕ〉 J . Hence, by condition 6, I <K J . This concludes
the proof. �
PROPOSITION A.20
An EIC merging operator Δ satisfies (Ind) iff there exists a filtering syncretic assignment associating
every profile K with a total preorder ≤K such that for every formula μ, mod(Δμ(K)) =
min(mod(μ), ≤K).

PROOF. (Only If) Let Δ be an IC merging operator satisfying (Ind) and let us consider the assignment
mapping every profile K to a preorder ≤K over worlds, defined for all worlds I , J as I ≤K J iff I |	
Δϕ{I ,J}(K). By Proposition 3.2 this assignment is an extended syncretic assignment, i.e. it satisfies
conditions 0–6. It remains to show that it satisfies F. Let I , J such that I <〈ϕ〉 J and J <〈ϕ′〉 I . By
definition of the assignment, we have Δϕ{I ,J}(〈ϕ〉) ≡ ϕ{I} and Δϕ{I ,J}(〈ϕ′〉) ≡ ϕ{J}. Since Δ satisfies
(Ind), by Corollary 14 it also satisfies (Ind-◦), and by Proposition 4.2 every revision operator involved
in (Ind-◦) is the revision operator ◦Δ corresponding to Δ (in the sense of Definition 2.8). Therefore,
we have Δϕ{I ,J}(〈ϕ, ϕ′〉) ≡ Δϕ{I ,J}(〈ϕ ◦Δ ϕ{I ,J}, ϕ′ ◦Δ ϕ{I ,J}〉) ≡ Δϕ{I ,J}(〈Δϕ{I ,J}(〈ϕ〉), Δϕ{I ,J}(〈ϕ′〉)〉) ≡
Δϕ{I ,J}(〈ϕ{I}, ϕ{J}〉). Yet by (IC0), (IC1) and (IC4), we have Δϕ{I ,J}(〈ϕ{I}, ϕ{J}〉) ≡ ϕ{I ,J}. So
Δϕ{I ,J}(〈ϕ, ϕ′〉) ≡ ϕ{I ,J}. Hence, I �〈ϕ,ϕ′〉 J , i.e. condition F is satisfied by the assignment. (If)
Consider a filtering syncretic assignment and define Δ by mod(Δμ(K)) = min(mod(μ), ≤K). From
Proposition 3.2, Δ satisfies (Inc), (IC0–IC8). Let K = 〈ϕ1, . . . , ϕn〉 be a profile, μ be any formula
and K′ ≡ 〈ϕ1 ∧ μ, . . . , ϕm ∧ μ〉. To prove that Δ satisfies (Ind), it is enough to show that for all
worlds I , J |	 μ, I <K J iff I <K′ J . Yet we have that |I(K)| = |I(K′)| and |J(K)| = |J(K′)|, so
by using Proposition 19 we can state that for all worlds I , J |	 μ, I <K J iff |I(K)| > |J(K)| iff
|I(K′)| > |J(K′)| iff I <K′ J . This concludes the proof.

�
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PROPOSITION A.21
ΔdD,� is the only EIC merging operator satisfying (Ind).

PROOF. By Corollary 3, ΔdD,� is an EIC merging operator satisfying (Ind). Then by
Proposition 5.4, ΔdD,� can be associated with a filtering syncretic assignment such that for every
profile K and every formula μ, mod(Δμ(K)) = min(mod(μ), ≤K). And by Corollary 3.1, there
is only one such filtering syncretic assignment. Therefore, ΔdD,� is the only EIC merging operator
satisfying (Ind). �
PROPOSITION A.22
Any distance-based merging operator Δd,� satisfies (ESF-I).

PROOF. Let Δd,� be an extended distance-based merging operator. Let K = 〈ϕ1, . . . , ϕn〉, K′ =
〈ϕ′

1, . . . , ϕ′
n〉, and let μ be a formula. Assume that for every formula μ′ |	 μ and for each i ∈

{1, . . . , n}, ϕi ◦Δd,� μ′ ≡ ϕ′
i ◦Δd,� μ′, or equivalently, that Δ

d,�
μ′ (〈ϕi〉) ≡ Δ

d,�
μ′ (〈ϕ′

i〉). By definition

of Δd,� , this precisely means that for each i ∈ {1, . . . , n} and for all interpretations I , J |	 μ,
d(I , ϕi) ≤ d(J , ϕi) if and only if d(I , ϕ′

i) ≤ d(J , ϕ′
i); hence,

∑
ϕi∈K(d(I , ϕi)) ≤ ∑

ϕi∈K(d(J , ϕi))

if and only if
∑

ϕ′
i∈K′(d(I , ϕ′

i)) ≤ ∑
ϕ′

i∈K′(d(J , ϕ′
i)). Therefore, Δ

d,�
μ (K) ≡ 	

d,�
μ (K′). This shows

that 	d,� satisfies (ESF-I). �
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