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Abstract

Two families of conciliation processes for intelligent agents based on an it-
erated merge-then-revise change function for belief profiles are introduced and
studied. The processes from the first family are skeptical in the sense that at any
revision step, each agent considers that her current beliefs are more important than
the current beliefs of the group, while the processes from the other family are cred-
ulous. Some key features of such conciliation processes are pointed out for several
merging operators; especially, the stationarity issue, the existence of consensus and
the properties of the induced iterated merging operators are investigated.

1 Introduction
Belief merging is about the following question: given a set of agents whose belief bases
are (typically) mutually inconsistent, how to define a belief base reflecting the beliefs
of the group of agents? Formally, from a functional point of view, a belief merging
operator 4 is any mapping which associates a belief base 4K(E) to a (non-empty)
belief profile E (gathering the agents’ beliefs) and a belief base K (representing some
integrity constraints, which must be satisfied by the merged base). There are many
different ways to address the belief merging issue in a propositional setting (see e.g.
[20, 28, 25, 24, 3, 4, 22, 23]). The variety of approaches just reflects the various ways
to deal with inconsistent beliefs.

Now, the belief merging issue is not concerned with the way the resulting merged
base is exploited by the group. One possibility is to suppose that all the belief bases
are replaced by the (agreed) merged base. This scenario is sensible with low-level
agents used for distributed computation, or in applications with distributed information
sources (like distributed databases). Once the merged base has been computed, all the
agents participating to the merging process share the same belief base. Such a drastic
approach clearly leads to weaken the beliefs of the system. Contrastingly, when high-
level intelligent agents are considered, the previous scenario looks rather unlikely: it is
not reasonable to assume that the agents are ready to completely discard their current
beliefs and unconditionnally accept the merged base as a new belief base. It seems
more adequate for them to incorporate the result of the merging process into their
current belief base.
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Taking such new beliefs into account calls for belief revision, which deals with the
incorporation of a new piece of evidence into the beliefs of an agent [2, 15, 18]. Many
belief revision operators (sometimes called “revision schemes”) can be found in the
literature. From a functional point of view, a belief revision operator ∗ is any mapping
which associates a belief base K ∗K ′ to a pair of belief bases K, K ′, where K gives
the initial beliefs and K ′ the incoming evidence.

Thus, given a revision strategy (and some revision operators – one per agent), every
merging operator 4 induces what we call a conciliation operator which maps every
belief profile E (i.e., the beliefs associated to each agent at start) to a new belief profile
where the new beliefs of an agent are obtained by confronting her previous beliefs with
the merged base given by E and 4.

In this perspective, two revision strategies can be considered. The first one consists
in giving more priority to the previous beliefs; this is the strategy at work for skeptical
agents. The second one, used by credulous agents, views the current beliefs of the
group as more important than their own, current beliefs.

Obviously enough, it makes sense to iterate such a merge-then-revise process when
the aim of agents is to reach an agreement (if possible): after a first merge-then-revise
round, each agent has possibly new beliefs, defined from her previous ones and the
beliefs of the group; this may easily give rise to new beliefs for the group, which must
be incorporated into the previous beliefs of agents, and so on.

Let us illustrate this idea with a simple example:

Example 1 There is a position available in some university. The committee in charge
of the recruitment consists of three professors A, B and C; the committee has to de-
termine the right profile for the position. Three criteria are considered: managerial
skills, teaching experience and research level of the candidate. Professor A believes
that the university does not need a teacher (¬t), and that any candidate who has a
good research research level (r) or good managerial skills (m) has the right profile.
Professor B believes that the university needs to recruit either a “pure” researcher
or a “pure” teacher. Finally, Professor C believes that the university needs some-
body with good research level, good managerial skills and good teaching experience.
Formally, the beliefs of Professors A, B, C as to the expected profile can be repre-
sented respectively by the propositional formulas (r ∨m) ∧ ¬t, ¬m ∧ (t ↔ ¬r), and
r ∧ t ∧ m. Assume now that the beliefs of the group are computed using a merg-
ing operator based on the Dalal distance and the aggregation function max (i.e., the
operator 4dH,Max formally defined in the following). Such beliefs are equivalent to
the formula (¬m ∧ t ∧ r) ∨ (m ∧ ¬t ∧ r) ∨ (m ∧ t ∧ ¬r). Now, each agent has
to incorporate them into her own beliefs. If they all used the revision operator asso-
ciated to 4dH,Max, i.e., Dalal revision operator [12], then the beliefs of Professor A
become m ∧ ¬t ∧ r, while the two other professors adhere to the beliefs of the group
(¬m ∧ t ∧ r) ∨ (m ∧ ¬t ∧ r) ∨ (m ∧ t ∧ ¬r). At this stage, a consensus has been
reached1 between the three professors since they now agree on m ∧ ¬t ∧ r, i.e., they
now all believe that a good profile for the position is somebody with good managerial
skills, good research level and no teaching experience. The conciliation process stops

1While this example shows that a consensus can be reached at the end of a conciliation process, this is
not always the case (see Proposition 7 and Example 4).
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here since a further merge-then-revise round changes neither the agents beliefs nor the
corresponding merged base (see Example 4 for the corresponding computations).

In this paper, we define such conciliation operators, which characterize how agents
beliefs evolve according to such an iterated merge-then-revise approach. This paper
addresses several questions: is it possible to define conciliation operators following a
merge-then-revise scheme, i.e., is there any guarantee that conciliation defined in that
way is a terminating process? Do such operators always lead to a consensus between
agents (i.e., agents get compatible beliefs after the conciliation)? Whenever a consen-
sus is reached, does the conciliation process necessarily stop? Do the induced iterated
merging operators satisfy rationality postulates for merging? The motivations for con-
sidering the first three questions are obvious. As to the fourth question above, the
rationale is the following one: merging operators are often considered as reporting an
“average point of view” between the agents’ bases; at a first glance, iterating the pro-
cess might be viewed as an approach to target in a more precise way such an “average
point of view”.

Now, defining such iterated merging operators calls for two assumptions: homo-
geneity (the same revision operator is used by all the agents) and compatibility (the re-
vision operator used is the one induced by the merging operator under consideration).
Without them, the “iterated merging” operator induced by a conciliation one does not
depend solely of the merging operator on which the conciliation operator is based, so
it cannot be considered stricto sensu as an “iterated merging operator”. Making those
two assumptions is sensible when one deals with autonomous agents who are ready to
incorporate into their beliefs the results of the merging steps, as it is the case in this
paper. Indeed, a possible explanation for such a behaviour is that the agents are confi-
dent in the quality of the information coming from the merging steps (especially they
all agree on the merging scheme to be used, otherwise they would not participate to the
conciliation process); for the scenarios where this explanation holds, the compatibility
and the homogeneity assumptions are justified: it makes sense that the agents use the
revision scheme associated to the merging one (so to say, the compatibility assumption
justifies the homogeneity one when the merging operator is considered as “good”).

The purpose of this paper is to study the two families of conciliation processes in-
duced by the two revision strategies so as to give some answers to the questions above.
We consider conciliation operators based on merging and revision operators which are
rational, in the sense that they satisfy the postulates (IC0-IC8) from [22, 23] and the
postulates (R1-R6) from [18] respectively (all those postulates are recalled in the fol-
lowing). For space reasons, we focus on conciliation processes under a uniformity
assumption: all agents are either skeptical ones or credulous ones.

In a nutshell, the contribution of the paper is as follows: we show that the ter-
mination of conciliation processes is guaranteed for skeptical operators, but it is only
conjectured for credulous ones; we show that conciliation leads to consensus only if
there is a consensus at start for skeptical operators, and does not necessarily lead to con-
sensus for credulous operators; we also show that the conciliation process necessarily
stops when a consensus is reached; finally, we show that the iterated merging operators
induced by conciliation ones typically satisfy only few rationality postulates for merg-
ing; especially, when a merging operator satisfies some postulates, this does not imply
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that the corresponding iterated one satisfies also those postulates. Thus, iterating the
merging process does not lead to “better” merging operators.

The rest of the paper is organized as follows. In the next section, some formal pre-
liminaries are provided. Section 3 presents the main results of the paper: in Section 3.1
the conciliation processes are defined, in Section 3.2 the focus is laid on the skeptical
ones and in Section 3.3 on the credulous ones. In Section 4 we consider conciliation
operators satisfying the compatibility and homogeneity assumptions; we investigate the
connections between the conciliation processes and the merging operators they induce.
Section 5 is devoted to related work. Finally, Section 6 gives some perspectives.

2 Preliminaries
We consider a propositional language L over a finite alphabet P of propositional sym-
bols and the boolean constants >,⊥. An interpretation is a total function from P
to {0, 1}. The set of all the interpretations is denoted W . An interpretation ω is
a model of a formula K, denoted by ω |= K, if it makes it true in the classical
truth functional way. Let K be a formula, [K] denotes the set of models of K, i.e.,
[K] = {ω ∈ W | ω |= K}. |= denotes logical entailment and ≡ denotes logical
equivalence.

A belief base K is a consistent propositional formula (or, equivalently, a finite
consistent set of propositional formulas considered conjunctively), viewed up to logical
equivalence.

Let K1, . . . ,Kn be n belief bases (not necessarily pairwise different). We call
belief profile the vector E consisting of those n belief bases in a specific order, E =
(K1, . . . ,Kn), so that the nth base gathers the beliefs of agent n. When n = 1, we
often write E = K instead of E = (K) in order to avoid heavy notations. We denote
by

∧
E the conjunction of the belief bases of E, i.e.,

∧
E = K1 ∧ · · · ∧Kn. We say

that a belief profile E is consistent if
∧

E is consistent. The union operator for belief
profiles is denoted by t, i.e., if E = (K1, . . . ,Kn) and E′ = (K ′

1, . . . ,K
′
m), then

E t E′ = (K1, . . . ,Kn,K ′
1, . . . ,K

′
m).

Let E be the set of all finite non-empty belief profiles. Two belief profiles E1 and
E2 from E are said to be equivalent (denoted by E1 ≡ E2) if and only if there is
a bijection between the profile E1 and the profile E2 s.t. each belief base of E1 is
logically equivalent to its image in E2. Note that the order given by the profile is not
relevant for equivalence. Two profiles E1 = (K1, . . . ,Kn) and E2 = (K ′

1, . . . ,K
′
n)

are said to be identical, denoted by E1 ≡ E2 if and only if ∀i ∈ 1 . . . n Ki ≡ K ′
i.

For every belief revision operator ∗, every profile E = (K1, . . . ,Kn) and every
belief base K, we define the revision of E by K (resp. the revision of K by E)
as the belief profile given by (K1, . . . ,Kn) ∗ K = (K1 ∗ K, . . . ,Kn ∗ K) (resp.
K ∗(K1, . . . ,Kn) = (K ∗K1, . . . ,K ∗Kn)). Since sequences of belief profiles will be
considered, we use superscripts to denote belief profiles obtained at some stage, while
subscripts are used (as before) to denote belief bases within a profile. For instance, Ei

denotes the belief profile obtained after i elementary evolution steps (in our framework,
i merge-then-revise steps), and Ki

j the belief base associated to the jth coordinate of
vector Ei (i.e., the beliefs of agent j at step i).
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2.1 IC Merging Operators
Some basic work in belief merging aims at determining sets of axiomatic properties
that valuable operators should exhibit [27, 28, 24, 21, 22, 23]. We focus here on the
characterization of Integrity Constraints (IC) merging operators [22, 23].

The aim is to characterize the belief base4µ(E), that represents the merging of the
profile E under the integrity constraints µ. µ is a formula that encodes some constraints
on the result (such as physical constraints, laws, norms, etc.).

Definition 1 4 is an IC merging operator if and only if it satisfies the following prop-
erties:

(IC0) 4µ(E) |= µ

(IC1) If µ is consistent, then 4µ(E) is consistent

(IC2) If
∧

E is consistent with µ, then 4µ(E) ≡
∧

E ∧ µ

(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then 4µ1(E1) ≡ 4µ2(E2)

(IC4) If K1 |= µ and K2 |= µ, then 4µ((K1,K2)) ∧K1 is consistent if and only if
4µ((K1,K2)) ∧K2 is consistent

(IC5) 4µ(E1) ∧4µ(E2) |= 4µ(E1 t E2)

(IC6) If 4µ(E1) ∧4µ(E2) is consistent, then 4µ(E1 t E2) |= 4µ(E1) ∧4µ(E2)

(IC7) 4µ1(E) ∧ µ2 |= 4µ1∧µ2(E)

(IC8) If 4µ1(E) ∧ µ2 is consistent, then 4µ1∧µ2(E) |= 4µ1(E)

Two subclasses of IC merging operators have been defined. IC majority opera-
tors aim at resolving conflicts by adhering to the majority wishes, while IC arbitration
operators exhibit a more consensual behaviour:

Definition 2 An IC majority operator is an IC merging operator which satisfies the
following majority postulate:

(Maj) ∃n 4µ (E1 t E2 t . . . t E2| {z }
n

) |= 4µ(E2).

An IC arbitration operator is an IC merging operator which satisfies the following
arbitration postulate:

(Arb)
4µ1 (K1) ≡ 4µ2 (K2)
4µ1⇔¬µ2 ((K1, K2)) ≡ (µ1 ⇔ ¬µ2)
µ1 6|= µ2

µ2 6|= µ1

9>>=>>; ⇒4µ1∨µ2 ((K1, K2)) ≡ 4µ1 (K1).

See [22, 23] for further explanations about those two postulates and the behaviour
of the corresponding merging operators.

Among IC merging operators are some distance-based ones. In order to present
such operators, one first needs to recall the following notions of pseudo-distance and
aggregation function:
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Definition 3 A pseudo-distance d between interpretations is a total function
d : W ×W 7→ IR+ such that for any ω, ω′ ∈ W , d(ω, ω′) = d(ω′, ω), and d(ω, ω′) =
0 if and only if ω = ω′.

Two widely used pseudo-distances between interpretations are Dalal distance [12],
denoted by dH , which is the Hamming distance between interpretations (i.e., the num-
ber of propositional variables on which the two interpretations differ); and the drastic
distance, denoted by dD, which is among the simplest pseudo-distances one can define:
it gives 0 if the two interpretations are the same one, and 1 otherwise.

Definition 4 An aggregation function f is a total function2 associating a nonnegative
real number to every finite tuple of nonnegative real numbers s.t. for any x1, . . . , xn, x,
y ∈ IR+:

• if x ≤ y, then f(x1, . . . , x, . . . , xn) ≤ f(x1, . . . , y, . . . , xn).
(non-decreasingness)

• f(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0. (minimality)

• f(x) = x. (identity)

Widely used functions are the max [28, 23], the sum Σ [28, 25, 22], or the leximax
GMax [22, 23]. The leximax GMax orders the tuple of its arguments, by sorting them
in a decreasing order (for instance, GMax(0, 1, 0, 2, 3) = (3, 2, 1, 0, 0)), and by com-
paring them for lexicographic ordering (for instance (3, 2, 1, 0, 0) < (3, 2, 2, 1, 0))3.

Given a pseudo-distance d and an aggregation function f , one can define a distance-
based merging operator 4d,f :

Definition 5 Let d be a pseudo-distance between interpretations and f be an aggrega-
tion function. The result 4d,f

µ (E) of the merging of E given the integrity constraints µ
is defined semantically by:

[4d,f
µ (E)] = min([µ],≤E)

where

• ω ≤E ω′ if and only if d(ω, E) ≤ d(ω′, E).

• d(ω, E) = fKi∈E(d(ω, Ki)).4

• d(ω, K) = minω′|=Kd(ω, ω′).

Let us illustrate the previous definitions on an example.

2More precisely it is a family of such functions, one for each n ∈ IN∗.
3This definition can be scalarized to give a number, as required by definition 4, cf. [20].
4dd,f (ω, E) is a more correct, yet heavy, notation for d(ω, E).
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Example 2 Let us consider a belief profile E = (K1,K2,K3,K4) and an integrity
constraint µ defined on a propositional language built over four symbols, as follows:
[µ] = W \ {(0, 1, 1, 0), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 0)}, [K1] = {(1, 1, 1, 1), (1, 1,
1, 0)}, [K2] = {(1, 1, 1, 1), (1, 1, 1, 0)}, [K3] = {(0, 0, 0, 0)}, and [K4] = {(1, 1, 1, 0),
(0, 1, 1, 0)}.

The computations are reported in Table 1. The shadowed lines correspond to the
interpretations rejected by the integrity constraints. Thus the result has to be taken
among the interpretations that are not shadowed. Each Ki column shows the Dalal
distance between each interpretation and the corresponding source. The last three
columns show the distance between each interpretation and the profile according to the
different aggregation functions. So the selected interpretations for the corresponding
operators are the ones with minimal aggregated distance.

With the4dH,Max operator, the minimum distance is 2 and the chosen interpretations
are [4dH,Max

µ (E)] = {(0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (1, 0, 0, 0)}.
With the 4dH,GMax operator, the result is [4dH,GMax

µ (E)] = {(0, 0, 1, 0), (0, 1, 0, 0)}.
Finally, if one chooses4dH,Σ for solving the conflicts according to majority wishes,

the result is [4dH,Σ
µ (E)] = {(1, 1, 1, 1)}.

W K1 K2 K3 K4 ddH,Max ddH,Σ ddH,GMax

(0, 0, 0, 0) 3 3 0 2 3 8 (3,3,2,0)
(0, 0, 0, 1) 3 3 1 3 3 10 (3,3,3,1)
(0, 0, 1, 0) 2 2 1 1 2 6 (2,2,1,1)
(0, 0, 1, 1) 2 2 2 2 2 8 (2,2,2,2)
(0, 1, 0, 0) 2 2 1 1 2 6 (2,2,1,1)
(0, 1, 0, 1) 2 2 2 2 2 8 (2,2,2,2)
(0, 1, 1, 0) 1 1 2 0 2 4 (2,1,1,0)
(0, 1, 1, 1) 1 1 3 1 3 6 (3,1,1,1)
(1, 0, 0, 0) 2 2 1 2 2 7 (2,2,2,1)
(1, 0, 0, 1) 2 2 2 3 3 9 (3,2,2,2)
(1, 0, 1, 0) 1 1 2 1 2 5 (2,1,1,1)
(1, 0, 1, 1) 1 1 3 2 3 7 (3,2,1,1)
(1, 1, 0, 0) 1 1 2 1 2 5 (2,1,1,1)
(1, 1, 0, 1) 1 1 3 2 3 7 (3,2,1,1)
(1, 1, 1, 0) 0 0 3 0 3 3 (3,0,0,0)
(1, 1, 1, 1) 0 0 4 1 4 5 (4,1,0,0)

Table 1: Distance-based merging operators at work

2.2 Merging vs. Revision
Belief revision operators deal with the incorporation of a new piece of evidence into
the beliefs of an agent; typically, the new piece of evidence is considered more reliable
than the beliefs of the agent [2, 15, 18]. More generally, belief revision operators can be
used to aggregate two pieces of information, when one takes precedence on the other.

Let us recall the Katsuno and Mendelzon [18] postulates for belief revision opera-
tors. Let ϕ and µ be two formulas from L. The operator ∗ is a KM revision operator if
and only if it satisfies the following postulates:
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(R1) ϕ ∗ µ implies µ

(R2) If ϕ ∧ µ is consistent then ϕ ∗ µ ≡ ϕ ∧ µ

(R3) If µ is consistent then ϕ ∗ µ is consistent

(R4) If ϕ1 ≡ ϕ2 and µ1 ≡ µ2 then ϕ1 ∗ µ1 ≡ ϕ2 ∗ µ2

(R5) (ϕ ∗ µ) ∧ φ implies ϕ ∗ (µ ∧ φ)

(R6) If (ϕ ∗ µ) ∧ φ is consistent then ϕ ∗ (µ ∧ φ) implies (ϕ ∗ µ) ∧ φ

When a finite propositional language is considered (which is the case in this paper),
Katsuno and Mendelzon postulates are equivalent to AGM ones ([2, 15], see [18] for
full justifications) and the KM operators and the AGM ones coincide.

Interestingly, belief revision operators can be viewed as special cases of belief
merging operators when applied to singleton profiles, as stated below:

Proposition 1 ([23]) If 4 is an IC merging operator (it satisfies (IC0-IC8)), then the
operator ∗4, defined as K ∗4 µ = 4µ(K), is an AGM revision operator (it satisfies
(R1-R6)) [18]. This operator is called the revision operator associated to the merging
operator 4.

Thanks to this proposition, to each IC merging operator one can straightforwardly
associate an AGM revision operator. For instance, all the operators 4dH,f (where f is
any aggregation function) are associated to the Dalal revision operator [18, 12].

3 Conciliation Operators
Conciliation operators aim at reflecting the evolution of belief profiles, typically to-
wards the achievement of some agreements between agents. Conciliation can be viewed
as a simple form of negotiation, where the way beliefs may evolve is uniform and pre-
set.

3.1 Definitions
Let us first give the following, very general, definition of conciliation operators:

Definition 6 A conciliation operator is a function from the set of belief profiles to the
set of belief profiles.

This definition does not impose any strong constraints on the result, except that
each resulting belief profile is solely defined from the given one. This does not prevent
conciliation operators from taking advantage of additional information as parameters.
For instance, integrity constraints representing norms or laws can be taken into account.
There are several ways to do it; if one assumes that the agents’ beliefs must obey such
laws, one can discard from the profile any agent who does not satisfy this requirement;
one can also ask each agent to revise her own beliefs by the integrity constraints as a
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preliminary step so as to ensure it. In the following we adhere to a more liberal attitude
and require integrity constraints to be satisfied at the group level, i.e., we do not ask
that the beliefs of each agent satisfy the constraints. This relaxation is all the more
important when conciliation is about preferences (i.e., goals): each agent is about to
change her preferences in the light of the preferences of other agents, with the objective
of achieving some agreements; each agent is free to have her own preferences, even if
they are infeasible. Nevertheless, the most preferred alternatives at the group level have
to be feasible.

Clearly, pointing out the desirable properties for such conciliation operators is an
interesting issue. We leave this for future work, but one can note that the social con-
traction functions introduced by Booth [10, 11] are a step in this direction.

In the following, we focus on a particular family of conciliation operators: con-
ciliation operators induced by an iterated merge-then-revise process. The idea is to
compute a merged base from the profile, to revise the beliefs of each agent by it, and
to repeat this process until a fixed point is reached. When such a fixed point exists,
the conciliation operator is defined and the resulting profile is the image of the original
profile by this operator. Indeed, when a fixed point has been reached, incorporating the
beliefs of the group has no further impact on the own beliefs of each agent; in some
sense, each agent did her best w.r.t. the group, given her revision operator. Then there
are two possibilities: either a consensus has been obtained, or no consensus can be
obtained that way:

Definition 7 There is a consensus for a belief profile E if and only if E is consistent
(with the integrity constraints).

The existence of a consensus for a belief profile just means that the associated
agents agree on at least one possible world. When this is the case, the models of the
corresponding merged base w.r.t. any IC merging operator reduce to such possible
worlds ((IC2) ensures it).

Interestingly, it can be shown that the existence of a consensus at some stage of the
merge-then-revise process is sufficient to ensure the existence of a fixed point, hence
the termination of the process. Before pointing out this result formally, let us first
define the iterated merge-then-revise process in a more precise way. Indeed, focusing
on classical AGM belief revision operators, there are two uniform ways to define the
process, depending of the relative confidence of the agents in their own beliefs and in
the result of the merging process. This leads to two families of operators: credulous
and skeptical operators.

Definition 8 Let 4 be an IC merging operator, and for any n ∈ IN∗, let ∗1, . . . , ∗n

be n AGM revision operators. Let E = (K1, . . . ,Kn) be a belief profile and µ an
integrity constraint. We define the sequence (Ei

c)i≥0 (depending on 4, ∗1, . . . , ∗n, E,
and µ) by:

Ei
c = (Ki

1, . . . ,K
i
n), where each Ki

j is defined inductively by:

• K0
j = Kj ,

• Ki+1
j = Ki

j ∗j 4µ(Ei
c).
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The credulous Iterated Merging Conciliation (IMC) operator induced by4 and ∗1, . . . , ∗n

is the function that associates E to Ek
c , where k is the least integer i such that Ei

c ↔
Ei+1

c , and is undefined otherwise. We denote by E∗
c = Ek

c the resulting profile.

Definition 9 Let 4 be an IC merging operator, and for any n ∈ IN∗, let ∗1, . . . , ∗n

be n AGM revision operators. Let E = (K1, . . . ,Kn) be a belief profile and µ an
integrity constraint. We define the sequence (Ei

s)i≥0 (depending on 4, ∗1, . . . , ∗n, E,
and µ) by:

Ei
s = (Ki

1, . . . ,K
i
n), where each Ki

j is defined inductively by:

• K0
j = Kj ,

• Ki+1
j = 4µ(Ei

s) ∗j Ki
j .

The skeptical Iterated Merging Conciliation (IMC) operator induced by4 and ∗1, . . . , ∗n

is the function that associates E to Ek
s , where k is the least integer i such that Ei

s ↔
Ei+1

s , and is undefined otherwise. We denote by E∗
s = Ek

s the resulting profile.

Every IMC operator induces a merging operator: the operator that associates to
each profile the merged base of the resulting profile. We call it the IM operator associ-
ated to the IMC operator. Formally:

Definition 10 Let 4 be an IC merging operator, and for any n ∈ IN∗, let ∗1, . . . , ∗n

be n AGM revision operators.

• The skeptical IM operator induced by4 and ∗1, . . . , ∗n is the function that maps
every profile E and every integrity constraint µ to 4µ(E∗

s ).

• The credulous IM operator induced by 4 and ∗1, . . . , ∗n is the function that
maps every profile E and every integrity constraint µ to 4µ(E∗

c ).

An important point is that, under rationality assumptions about the merging opera-
tor and the revision operators at work in the conciliation process, once a consensus has
been obtained at some stage, the process stops since the resulting profile is found.

From now on, in order to alleviate the notations, when we talk about merging op-
erators, we mean IC merging operators, and “revision operator” is used as a short for
AGM revision operator.

Proposition 2 For any credulous (resp. skeptical) IMC operator induced by a merging
operator and n belief revision operators, for any profile E and any integrity constraint
µ, if a consensus exists for Ei

c (resp. Ei
s), then E∗

c = Ei+1
c (resp. E∗

s = Ei+1
s ).

As expected, if a consensus can be reached using an iterated merging conciliation
operator, all the agents share the same beliefs once the conciliation has been achieved.
Such beliefs consist of the conjunction of all bases (with the constraints) from the
profile for which a consensus has been found.

Let us now consider two additional properties on conciliation operators: homo-
geneity and compatibility.
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Definition 11 Let 4 be a merging operator, and, for any n ∈ IN∗, let ∗1, . . . , ∗n be n
revision operators. An iterated merging conciliation operator is said to be:

• homogeneous if all the agents use the same revision operator:
∗1 = . . . = ∗n = ∗,

• compatible if the revision operator ∗ is associated to the merging operator 4:
∗ = ∗4.

Under the compatibility and homogeneity (CH) assumptions, defining an IMC op-
erator just requires to make precise the belief merging operator under use and the revi-
sion strategy (skeptical or credulous). Such an IMC operator is referred to as a CHIMC
operator:

Definition 12 Let 4 be a merging operator. Let E be any belief profile and µ an
integrity constraint. We define the sequence (Ei

s)i≥0 (depending on both 4, E and µ)
by:

• E0
s = E,

• Ei+1
s = 4µ(Ei

s) ∗4 Ei
s.

The skeptical CHIMC operator N∗ induced by 4 is defined by N∗µ(E) = Ek
s , where

k is the least integer i such that Ei
s ↔ Ei+1

s , and N∗µ(E) is undefined otherwise. We
denote by E∗

s = Ek
s the resulting profile.

Definition 13 Let 4 be a merging operator. Let E be any belief profile and µ an
integrity constraint. We define the sequence (Ei

c)i≥0 by:

• E0
c = E,

• Ei+1
c = Ei

c ∗4 4µ(Ei
c).

The credulous CHIMC operator ∗N induced by 4 is defined by ∗Nµ(E) = Ek
c , where

k is the least integer i such that Ei
c ↔ Ei+1

c , and ∗Nµ(E) is undefined otherwise. We
denote by E∗

c = Ek
c the resulting profile.

Every CHIMC operator induces a merging operator: the operator that associates to
each profile the merged base of the resulting profile. Formally:

Definition 14 Let 4 be a merging operator, and ∗ its associated revision operator.

• The skeptical CHIM operator induced by 4 is the function 4∗ that maps every
profile E and integrity constraint µ to 4µ(E∗

s ).

• The credulous CHIM operator induced by 4 is the function ∗4 that maps every
profile E and integrity constraint µ to 4µ(E∗

c ).

Let us now study the key features of the two sequences (Ei
s)i≥0 and (Ei

c)i≥0 and
the properties of the corresponding IMC operators.

11



3.2 Properties of Skeptical IMC Operators
We start with skeptical IMC operators. Let us first give an important monotony prop-
erty, which states that the conciliation process given by any IC merging operator and
any n-uple of AGM revision operators may only lead to strengthen the beliefs of each
agent:

Proposition 3 Let Ki
j denote the belief base corresponding to agent j in the belief

profile Ei
s characterized by the initial belief profile E, the integrity constraint µ, the

merging operator 4 and n revision operators ∗1, . . . , ∗n. For every i, j, we have
Ki+1

j |= Ki
j .

Another interesting property is that the sequence of profiles and the corresponding
sequence of merged bases are equivalent with respect to stationarity:5

Proposition 4 Let E be a belief profile, 4 be a merging operator, and n revision
operators ∗1, . . . , ∗n. Let µ be any integrity constraint. If the sequence (Ei

s)i≥0 is
stationary from i, then the sequence (4µ(Ei

s))i≥0 is stationary from i. Conversely, if
the sequence (4µ(Ei

s))i≥0 is stationary from i, then the sequence (Ei
s)i≥0 is stationary

from i + 1.

On this ground, it is easy to prove that the sequence (Ei
s)i≥0 is stationary for every

profile E. Accordingly, the skeptical conciliation operator and the induced skeptical
IM operator are defined for every E:

Proposition 5 For every belief profile E, every integrity constraint µ, every merg-
ing operator 4, and every n-uple of revision operators ∗1, . . . , ∗n, the stationarity of
(Ei

s)i≥0 is reached from an integer upper bounded by
∑

K∈E #([K])−#(E). There-
fore, the skeptical IMC operator induced by 4 and ∗1, . . . , ∗n, and the associated
skeptical IM operator are total functions.

Under the compatibility and homogeneity assumptions, we can prove that the num-
ber of iterations needed to reach the fixed point of (Ei

s)i≥0 is 1, provided that the
underlying merging operator is one of 4dD,Max, 4dD,Σ, 4dD,GMax. This is an easy con-
sequence of the following proposition:

Proposition 6 If the merging operator 4 is 4dD,Max or 4dD,Σ = 4dD,GMax, then for
any profile E = (K1, . . . ,Kn) and any integrity constraint µ, the skeptical CHIMC
operator given by N∗µ(E) = E∗

s = (K∗
1 , . . . ,K∗

n), is s.t. for every j:

K∗
j ≡

{
Kj ∧4µ(E) if consistent
Kj otherwise.

Furthermore, the resulting profile is obtained after at most one iteration (i.e., for every
i > 0, Ei+1

s ↔ Ei
s).

We have no direct (i.e., non-iterative) definition for any skeptical CHIMC operator
based on an IC merging operator defined from Dalal distance. Let us give an example
of such an operator:

5An (infinite) sequence (ui)i≥0 = u0, . . . , un, . . . is said to be stationary from i if and only if ∀j ≥ i,
uj+1 = uj . It is said to be stationary if and only if there exists an integer i s.t. it is stationary from i.

12



Example 3 Let us consider the profile E = (K1,K2,K3) with [K1] = {(0, 0, 0),
(0, 0, 1), (0, 1, 0)}, [K2] = {(0, 1, 1), (1, 1, 0), (1, 1, 1)}, [K3] = {(0, 0, 0), (1, 0, 0),
(1, 0, 1), (1, 1, 1)}, no integrity constraints (µ ≡ >), and the skeptical CHIMC opera-
tor N∗ dH,GMax induced by 4dH,GMax. The complete process is depicted in Table 2. Each
Ki column shows the Dalal distance between each interpretation and Ki. The last
column shows the distance between each interpretation and the profile according to
the aggregation function. The selected interpretations for the corresponding operators
are the ones with minimal aggregated distance. In the last column for skeptical oper-
ators is shown in subscript the distance used for revision (one can check that the 0s
correspond to the models of the merged base).

Since there are several (three in that case) iterations, we sum up the three tables
(corresponding to the three merging steps) in a single one. For example in column
Ki

1, the first number (0) denotes the distance between the interpretation ω and K1
1 , the

second one (1) the distance between ω and K2
1 , and so on.

Let us explain the full process in details. The first profile is E0 = E. The first merg-
ing iteration gives as result [4dH,GMax(E0)] = {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0),
(1, 0, 1), (1, 1, 0)}. Then, every agent revises the result of the merging with its old be-
liefs, i.e., K1

i = 4dH,GMax(E0) ∗K0
i , so [K1

1 ] = {(0, 0, 1), (0, 1, 0)}, [K1
2 ] = {(0, 1, 1),

(1, 1, 0)} and [K1
3 ] = {(1, 0, 0), (1, 0, 1)}. Since each of the three bases is consistent

with the merged base, the new base of each agent is just the conjunction of her previ-
ous base with the merged base (in accordance to revision postulates). Then, the second
merging iteration gives [4dH,GMax(E1)] = {(0, 0, 1), (1, 1, 0)}, and the revision of each
base gives [K2

1 ] = {(0, 0, 1)}, [K2
2 ] = {(1, 1, 0)}, and [K2

3 ] = {(1, 0, 0), (1, 0, 1)}.
The third iteration step gives [4dH,GMax(E2)] = {(1, 0, 0), (1, 0, 1)}, and the revision
step does not change any belief base, i.e., E2 ≡ E3, so a fixed point is reached and the
process stops with this profile.

W Ki
1 Ki

2 Ki
3 Ei

4µ(Ei)

(0,0,0) 0,1,1 2,2,2 0,1,1 (2, 0, 0)1,(2, 1, 1)1,(2, 1, 1)1
(0,0,1) 0,0,0 1,1,3 1,1,1 (1, 1, 0)0,(1, 1, 0)0,(3, 1, 0)1
(0,1,0) 0,0,2 1,1,1 1,2,2 (1, 1, 0)0,(2, 1, 0)1,(2, 2, 1)2
(0,1,1) 1,1,1 0,0,2 1,2,2 (1, 1, 0)0,(2, 1, 0)1,(2, 2, 1)2
(1,0,0) 1,2,2 1,1,1 0,0,0 (1, 1, 0)0,(2, 1, 0)1,(2, 1, 0)0
(1,0,1) 1,1,1 1,2,2 0,0,0 (1, 1, 0)0,(2, 1, 0)1,(2, 1, 0)0
(1,1,0) 1,1,3 0,0,0 1,1,1 (1, 1, 0)0,(1, 1, 0)0,(3, 1, 0)1
(1,1,1) 2,2,2 0,1,1 0,1,1 (2, 0, 0)1,(2, 1, 1)1,(2, 1, 1)1

Table 2: The skeptical CHIMC operator N∗ dH,GMax
µ

Finally, for skeptical operators, we can prove that the conciliation process cannot
lead to a consensus, unless a consensus already exists at start:

Proposition 7 Let E be a belief profile and µ be an integrity constraint; let 4 be a
merging operator and ∗1, . . . , ∗n be n revision operators. For any integer i, a consen-
sus exists for Ei

s if and only if a consensus exists for E0
s .
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3.3 Properties of Credulous IMC Operators
Let us now turn to credulous IMC operators, and first give some general properties
about such operators.

Proposition 8 Let Ki
j now denote the belief base corresponding to agent j in the belief

profile Ei
c characterized by the initial belief profile E, the integrity constraint µ, the

merging operator 4 and n revision operators ∗1, . . . , ∗n. We have that:

• ∀i, j Ki+1
j |= 4µ(Ei

c),

• ∀i > 0 ∀j Ki
j |= µ,

• ∀i, j, if Ki
j ∧4µ(Ei

c) is consistent, then Ki+1
j ≡ Ki

j ∧4µ(Ei
c).

The first item in Proposition 8 states that, during the evolution process, each base
implies the previous merged base. The second item states that from the first iteration,
each base implies the integrity constraints. The last one is a simple consequence of a
revision property: if, at a given step, a base is consistent with the result of the merging,
then the base at the next step will be the conjunction of the previous base with the
merged base.

Unfortunately, the monotony property as reported in Proposition 3 does not hold in
the credulous case. At that point, one can just conjecture that our credulous CHIMC
operators (and the corresponding iterated merging operators) are defined for every pro-
file:

Conjecture 1 For every credulous CHIMC operator ∗N induced by a merging operator
4 based on the aggregation function Max, GMax or Σ and for every belief profile E
and integrity constraint µ, the sequence (Ei

c)i≥0 is stationary.

This claim is supported by some empirical evidence. We have conducted exhaustive
tests for profiles containing up to three bases, when the set of propositional symbols
contains up to three variables.6 The following IC merging operators have been con-
sidered: 4dH,Max, 4dH,GMax and 4dH,Σ. We have also conducted non-exhaustive tests
when four propositional symbols are considered in the language (this leads to billions
of tests). All the tested instances support the claim (stationarity is reached in less than
five iterations when up to three symbols are considered, and less than ten iterations
when four symbols are used).

We can nevertheless prove the stationarity of (Ei
c)i≥0 for every belief profile E and

every integrity constraint µ when some specific IC merging operators4 are considered,
and the compatibility and homogeneity assumptions are made. In particular, for some
merging operators defined from the drastic distance, it is possible to find out a non-
iterative definition of the corresponding CHIMC operator, and to prove that it is defined
for every profile.

6Data can be obtained from the authors upon request.
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Proposition 9 For any profile E = (K1, . . . ,Kn) and any integrity constraint µ, the
credulous CHIMC operator given by ∗NdD,Max

µ (E) = E∗
c = (K∗

1 , . . . ,K∗
n), is s.t. for

every j:

K∗
j ≡


µ ∧

∧
Ki:Ki∧µ6|=⊥

Ki if consistent, else

µ ∧Kj if consistent,
µ otherwise.

Furthermore, the resulting profile is obtained after at most two iterations (i.e., for every
i > 1, Ei+1

c ↔ Ei
c).

Proposition 10 For any profile E = (K1, . . . ,Kn) and any integrity constraint µ,
the credulous CHIMC operator induced by ∗NdD,GMax

µ (E) = ∗NdD,Σ
µ (E) = E∗

c =
(K∗

1 , . . . ,K∗
n), is s.t. for every j:

K∗
j ≡

{
Kj ∧4dD,GMax

µ (E) if consistent
4dD,GMax

µ (E) otherwise.
Furthermore, the resulting profile is obtained after at most one iteration (i.e., for every
i > 0, Ei+1

c ↔ Ei
c).

Now, whatever the credulous conciliation process terminates or not, we can prove
that, like for the skeptical case, the sequence of profiles and the corresponding sequence
of merged bases are equivalent w.r.t. stationarity:

Proposition 11 Let E be a belief profile, 4 be a merging operator and ∗1, . . . , ∗n be
n revision operators. Let µ be any integrity constraint. If the sequence (Ei

c)i≥0 is
stationary from i, then the sequence (4µ(Ei

c))i≥0 is stationary from i. Conversely, if
the sequence (4µ(Ei

c))i≥0 is stationary from i, then the sequence (Ei
c)i≥0 is stationary

from i + 1.

Let us finally consider the consensus issue. In order to illustrate the case when
credulous conciliation does not lead to a consensus, let us first consider the following
example:

W Ki
1 Ki

2 Ki
3 Ki

4 Ei

(0,0,0) 0,1,1 1,1,1 1,1,1 1,1,1 3,4,4
(0,0,1) 0,0,0 1,2,2 0,0,0 1,1,2 2,3,4
(0,1,0) 0,2,2 2,2,2 0,1,2 1,1,2 3,6,8
(0,1,1) 1,1,1 1,3,3 0,0,1 0,0,3 2,4,8
(1,0,0) 1,2,2 0,0,0 1,1,2 0,0,0 2,3,4
(1,0,1) 1,1,1 0,1,1 1,1,1 1,1,1 3,4,4
(1,1,0) 1,3,3 1,1,1 0,0,3 0,0,1 2,4,8
(1,1,1) 2,2,2 0,2,2 1,1,2 0,1,2 3,6,8

Table 3: A credulous conciliation scenario for which no consensus is reached

Example 4 Consider the profile E = (K1,K2,K3,K4), with [K1] = {(0, 0, 0), (0, 0,
1), (0, 1, 0)}, [K2] = {(1, 0, 0), (1, 0, 1), (1, 1, 1)}, [K3] = {(0, 0, 1), (0, 1, 0), (0, 1, 1),
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(1, 1, 0)}, [K4] = {(0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)}. There is no integrity con-
straint: µ ≡ >. Let us consider the credulous CHIMC ∗NdH,Σ operator induced
by the merging operator 4dH,Σ. The computations are summarized in Table 3. The
resulting profile is [K2

1 ] = {(0, 0, 1)}, [K2
2 ] = {(1, 0, 0)}, [K2

3 ] = {(0, 0, 1)} and
[K2

4 ] = {(1, 0, 0)}. The corresponding CHIM operator ∗4dH,Σ gives as a result a base
whose models are {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)}, which is different from the
result of the merging of E by the underlying merging operator:

[4dH,Σ(E)] = {(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0)}.

Contrastingly, there are situations where a credulous conciliation process ends with
a consensus found, as illustrated by the following example (which echoes Example 1).

Example 5 Consider the profile E = (K1,K2,K3), with [K1] = {(0, 0, 1), (1, 0, 0),
(1, 0, 1)}, [K2] = {(0, 0, 1), (0, 1, 0)}, [K3] = {(1, 1, 1)}. There is no integrity con-
straint: µ ≡ >. If we consider the credulous CHIMC operator ∗NdH,Max induced by
the merging operator 4dH,Max, then the resulting profile is [K∗

1 ] = [K∗
2 ] = [K∗

3 ] =
{(1, 0, 1)} (see Table 4 for the computations), showing that a consensus has been
reached.

ω d(ω, Ki
1) d(ω, Ki

2) d(ω, Ki
3) dMax(ω, Ei)

(0,0,0) 1,2,2 1,1,2 3,1,2 3,2,2
(0,0,1) 0,1,1 0,1,1 2,1,1 2,1,1
(0,1,0) 2,3,3 0,1,3 2,1,3 2,3,3
(0,1,1) 1,2,2 1,0,2 1,0,2 1,2,2
(1,0,0) 0,1,1 2,1,1 2,1,1 2,1,1
(1,0,1) 0,0,0 1,0,0 1,0,0 1,0,0
(1,1,0) 1,2,2 1,0,2 1,0,2 1,2,2
(1,1,1) 1,1,1 2,1,1 0,1,1 2,1,1

Table 4: A credulous conciliation scenario where a consensus is reached

4 Iterated Merging Operators
In this section, we consider CHIM operators, only. Unlike other IM operators, they can
be considered as true “iterated merging operators” since they are fully specified by a
given merging operator. The key issue one wants to address is to determine whether
such iterated merging operators are “good” merging ones, in the sense that they satisfy
all the IC rationality postulates for merging.

Our investigation shows that the answer is negative in general: only some basic
postulates are guaranteed to hold. To be more precise, our results show that when a
merging operator satisfies a set of postulates, this does not imply that the corresponding
iterated one satisfies the same set of postulates.
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Proposition 12 Credulous and skeptical CHIM operators satisfy (IC0-IC3), (IC7)
and (IC8).

Some important properties of IC merging operators are usually lost through the
merge-then-revise process. So, such iterated merging operators are not as good as
one could expect as merging operators: iterating the merging process does not lead to
improved merging operators, as far as the rationality postulates are concerned.

Nevertheless, specific iterated merging operators (i.e., those induced by some spe-
cific merging operators 4) may easily satisfy additional postulates.

For operators based on the drastic distance, we have obtained the following results.
As to skeptical operators, a trivialization result holds:

Corollary 1 4dD,Max = 4∗ dD,Max and 4dD,Σ = 4dD,GMax = 4∗ dD,GMax = 4∗ dD,Σ.

This corollary comes directly from Proposition 6. Roughly, it shows that, in the
skeptical case, the iteration of the process does not change anything with respect to
merging, when the underlying merging operators are 4dD,Max and 4dD,Σ. Note that the
logical properties of 4dD,Max and 4dD,Σ have been identified so far [23].

As to credulous operators, a direct corollary of Proposition 9 is:

Corollary 2 The credulous CHIM operator ∗4dD,Max
µ can be defined as follows:

∗4dD,Max
µ (E) ≡

 µ ∧
∧

Ki:Ki∧µ6|=⊥

Ki if consistent

µ otherwise.

The corresponding logical properties are:

Proposition 13 The credulous CHIM operator ∗4dD,Max
µ satisfies (IC0-IC5), (IC7),

(IC8) and (Arb). It satisfies neither (IC6) nor (Maj).

Proposition 14 The credulous CHIM operator ∗4dD,GMax
µ = ∗4dD,Σ

µ coincides with
4dD,GMax

µ = 4dD,Σ
µ ; hence, it satisfies (IC0-IC8), (Arb) and (Maj).

Things are less easy for operators based on Dalal distance. Up to now, we did
not find any equivalent, non-iterative, definition for any of them. For each underlying
merging operator under consideration, we gather the results about credulous/skeptical
CHIM operators since it turns out that such operators satisfy the same postulates; how-
ever, the proofs are typically distinct for the two families of operators. Furthermore,
since stationarity is only conjectured for credulous operators (cf. Conjecture 1), we
do not have a proof that the corresponding CHIM operators are total functions. So the
two following results on credulous operators are guaranteed under the conjecture of
stationarity, only.

Proposition 15 The credulous (resp. skeptical) CHIM operator ∗4dH,Σ
µ (resp. 4∗ dH,Σ

µ )
satisfies (IC0-IC3), (IC7), (IC8) and (Maj), but does not satisfy (IC5), (IC6) and
(Arb). The satisfaction of (IC4) is an open issue.
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Proposition 16 The credulous (resp. skeptical) CHIM operators ∗4dH,Max
µ and ∗4dH,GMax

µ

(resp. 4∗ dH,Max
µ and 4∗ dH,GMax

µ ) satisfy (IC0-IC3), (IC7), (IC8), but satisfy none of
(IC5), (IC6), (Maj) and (Arb). The satisfaction of (IC4) is an open issue.

Summing up the results provided in this section, there is (generally) no logical
link between the initial merging operator and its iterated counterpart, in the sense that
the satisfaction of a set of postulates by the former does not imply the satisfaction
of the same set of postulates by the latter. The CHIM operators are shown to satisfy
only poor properties with respect to merging. In particular, (IC5) and (IC6), which
are important properties from an aggregation point of view since they correspond to
Pareto dominance in Social Choice Theory, are usually not satisfied. This is a direct
consequence of the iterative definition of such operators, and results from the impact
of other agents’ beliefs on the belief of each agent during the process.

Those results suggest that CHIM operators are not interesting as merging operators.
Since CHIM operators compute the beliefs of the group of agents after conciliation, as
the result of the negotiation modeled by the corresponding CHIMC operators, this may
just reflect the fact that merging and negotiation are two distinct notions.

In Propositions 15 and 16 we let the satisfaction of (IC4) as an open issue. This
means that we do not have the proof of the result to hold (or not). Nevertheless, the
satisfaction of (IC4) can be conjectured: in all the conducted experiments, we did not
find any counter-example to it (as mentioned earlier, we have conducted exhaustive
tests for profiles containing up to three bases, when the set of propositional symbols
contains up to three variables. We have also conducted non-exhaustive tests when four
propositional symbols are considered in the language (this led to billions of tests)).

5 Related Work
The notion of conciliation considered in this paper can be viewed as a very specific
form of negotiation, and as such, is related to the abundant literature in AI dealing
with the latter notion. An important difference is that conciliation is concerned only
with beliefs, while negotiation typically takes account for the agents’ goals and the
available actions. Furthermore, the issue of a negotiation process cannot be predicted
in the general case: at each step the agents are free of their decisions, provided that such
decisions are compatible with the chosen negotiation protocol, and the decisions made
cannot be guessed (the input is not rich enough to include a representation of the model
for decision making used by each agent). Contrastingly, conciliation processes can be
considered as atomic decisions made by the group of agents: once the agents agree
to participate to such a process, their beliefs evolve as specified by the corresponding
conciliation operator.

More closely related to our work are [10, 9, 11]. In those papers, Richard Booth
presents what he calls Belief Negotiation Models. Such negotiation models can be
formalized as games between sources: until a coherent profile of bases is reached, at
each round a contest is organized to find out the weakest belief bases, then those bases
have to be logically weakened. This idea leads to numerous new interesting operators
(depending of the exact meanings given to “weakest” and “weaken”, which are the two
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parameters for this family). Booth is interested at the same time in the evolution of the
profile (in connection to what he calls social contraction), and to the resulting merged
base (the result of the Belief Negotiation Model).

In [19] a systematic study of a subclass of those operators, called Belief Game
Models, is achieved. This subclass contains operators closer to merging ones than the
general class which also allows for negotiation-like operators.

All those operators are close in spirit to the IMC/IM operators defined in this work.
A main difference is that in the work presented in this paper, the evolution of a profile
does not always lead to a consensus. Scenarios where agents disagree at a final stage
are allowed. So IMC operators seem more adequate to formalize interaction between
agents’ beliefs than Belief Game Models.

6 Conclusion and Perspectives
In this paper, we have introduced two families of conciliation processes based on an
iterated merge-then-revise scheme. On this ground, conciliation operators and the as-
sociated iterated merging operators have been defined and studied.

This work calls for many perspectives. One of them concerns the stationarity con-
jecture related to credulous CHIMC operators.

A second perspective is about rationality postulates for conciliation operators; such
postulates should reflect the fact that at the end of the conciliation process, the dis-
agreement between the agents participating to the conciliation process is expected not
to be more important than before; a difficulty is that it does not necessarily mean that
this must be the case at each step of a conciliation process.

Another perspective is to relate this work to other approaches to conflict measure-
ment. The point is that when a consensus is reached for a conciliation operator, one can
use the number of steps needed to reach the consensus as a measure of conflict of the
profiles. Such a measure could be used to compare several profiles and to determine
the less conflictual ones.

Finally, it would be interesting to enrich our framework in several directions; one
of them consists in studying less drastic revision behaviours, for example those ob-
tained by relaxing the uniformity assumption or through the use of non-prioritized
belief revision operators [26, 17, 14, 16, 29]; indeed, in some situations, it can prove
sensible to consider that an agent is free from rejecting a negotiation step, would it
lead her to a belief state “too far” from her original one. Another direction for further
work consists in generalizing our approach to other formal settings, extending classical
propositional logic; interesting candidates for such a generalization are propositional
possibilistic logic [13] and the closely related OCF / κ-functions [30], for which sophis-
ticated approaches for revision and merging have been defined so far (see in particular
[31, 32, 6, 5, 7, 8]) and implemented in some cases (see in particular the SATEN system
[1]).
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Appendix: Proofs
Proof of Proposition 2: Let us first consider the credulous case. If there is a consen-
sus for Ei

c, then µ∧
∧

Ei
c is consistent. From the (IC2) property of the merging opera-

tor, we have that 4µ(Ei
c) ≡ µ∧

∧
Ei

c. Hence for any Ki
j , we have Ki

j ∧4µ(Ei
c) con-

sistent. Since ∗j is an AGM revision operator, by (R2) we have that Ki
j ∗j 4µ(Ei

c) ≡
Ki

j ∧ 4µ(Ei
c). Since 4µ(Ei

c) |= Ki
j , we have Ki

j ∗j 4µ(Ei
c) ≡ 4µ(Ei

c). So the
new profile is Ei+1

c = (4µ(Ei
c), . . . ,4µ(Ei

c)). From (IC2), the result of the merg-
ing of this profile is 4µ(Ei+1

c ) ≡ 4µ(Ei
c). Furthermore, since for any j, we have

Ki+1
j ≡ 4µ(Ei

c) we have Ki+1
j ∧ 4µ(Ei

c) ≡ Ki+1
j which is consistent. From (R2)

we get that Ki+2
j ≡ Ki+1

j , hence Ei+2
c ↔ Ei+1

c . So E∗
c = Ei+1

c . The proof is sim-
ilar in the skeptical case, mutatis mutandis (the key observation is that we also have
4µ(Ei

s) ∗j Ki
j ≡ Ki

j ∧4µ(Ei
s) ≡ 4µ(Ei

s)). 2

Proof of Proposition 3: By definition Ki+1
j = 4µ(Ei

s) ∗j Ki
j . Since ∗j is an AGM

revision operator, from postulate (R1), we have that Ki+1
j |= Ki

j . 2

Proof of Proposition 4: The first implication is straightforward by Definition 12.
As to the second one, suppose that 4µ(Ei+1

s ) ≡ 4µ(Ei
s). By definition of the AGM

revision operator, and thanks to Katsuno and Mendelzon representation theorem [18]
we have that [Ki+1

j ] = min([Ki
j ],≤

j
4µ(Ei

s)), where ≤j
4µ(Ei

s) is the total pre-order as-
sociated to 4µ(Ei

s) by the faithful assignment of the revision operator ∗j . Similarly
[Ki+2

j ] = min([Ki+1
j ],≤j

4µ(Ei+1
s )

). But, since by assumption,4µ(Ei+1
s ) ≡ 4µ(Ei

s),

this gives [Ki+2
j ] = min(min([Ki

j ],≤
j
4µ(Ei

s)),≤
j
4µ(Ei

s)) = min([Ki
j ],≤

j
4µ(Ei

s)) =

[Ki+1
j ]. So Ki+2

j ≡ Ki+1
j . Hence Ei+1

s ↔ Ei+2
s . 2

Proof of Proposition 5: Let us consider the sequence (ui)i≥0, where ui =∑
j #([Ki

j ]). From Proposition 3 we know that this sequence of positive integers is
non-increasing. So there exists a least integer i s.t. ui = ui+1.

From Proposition 3, we know that for every i, j every model of Ki+1
j is a model of

Ki
j , and from Proposition 4 we have that if Ei+1

s ↔ Ei
s for some i then the fixed point

is reached. For every j < i, we have uj > uj+1. We also know that when the fixed
point is reached, there is at least one model for each base; this gives the upper bound∑

K∈E #([K])−#(E). 2

Proof of Proposition 6: For any of the operators under consideration, if µ ∧
∧

E
is consistent, then from postulate (IC2) we know that the result of the merging is this
conjunction, and from (R1), (R2) and (R3) of the corresponding revision operator we
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have that for each j K1
j ≡ µ ∧

∧
E. So the fixed point is reached after one iteration,

and K∗
j ≡ µ ∧

∧
E.

If µ ∧
∧

E is not consistent, then:

• For4dD,Max, we have4dD,Max
µ (E) ≡ µ. So by the properties of the corresponding

revision operator, for each j, K1
j ≡ Kj ∧ µ if this is consistent, and K1

j ≡ Kj

otherwise. So 4dD,Max
µ (E1) ≡ 4dD,Max

µ (E), and the fixed point is reached.

• For4dD,Σ = 4dD,GMax, we have for each j, if4dD,Σ
µ (E)∧Kj is consistent, then

K1
j ≡ 4dD,Σ

µ (E) ∧ Kj , else K1
j ≡ Kj . It is easy to show that 4dD,Σ

µ (E1) ≡
4dD,Σ

µ (E), and that the fixed point is reached at this stage.

2

Proof of Proposition 7: This result is a straightforward consequence of Proposition
3. From Proposition 3 we have Ki+1

j |= Ki
j . Hence, if there exists a rank i such that

Ki
1 ∧ . . .∧Ki

n is consistent, then K0
1 ∧ . . .∧K0

n is consistent as well. Therefore, there
is a consensus for E at the start. 2

Proof of Proposition 8: These results are direct consequences of the fact that 4 is
an IC merging operator and ∗1, . . . , ∗n are AGM revision operators:

• By definition of credulous operators, Ki+1
j ≡ Ki

j ∗j 4µ(Ei
c). Since ∗j is an

AGM revision operator, it satisfies (R1), so Ki+1
j |= 4µ(Ei

c).

• From (IC0) we have 4µ(Ei
c) |= µ; we also have ∀i, j Ki+1

j |= 4µ(Ei
c); hence

∀i, j Ki+1
j |= µ.

• By definition of credulous operators, Ki+1
j ≡ Ki

j ∗j 4µ(Ei
c). From (R2) we

have that if Ki
j ∧4µ(Ei

c) is consistent, then Ki+1
j ≡ Ki

j ∧4µ(Ei
c).

2

Proof of Proposition 9:

• If µ ∧
∧

E is consistent then, by (IC2) we have that 4dD,Max
µ (E) ≡ µ ∧

∧
E.

Then for every j, K1
j ≡ Kj ∗4 4dD,Max

µ (E) ≡ 4dD,Max
µ (E) (by (R1)). So the

fixed point is reached after one iteration, and for every j, K∗
j ≡ µ ∧

∧
E.

• If µ ∧
∧

E is not consistent, then by definition of the operator, 4dD,Max
µ (E) ≡ µ.

Then for every Kj there are two cases for the revision. Either Kj∧µ is consistent,
then by (R1), this is the result of the revision, and K1

j ≡ Kj ∧ µ. Or Kj ∧ µ

is not consistent and by definition of the revision K1
j ≡ µ. Now let us compute

4dD,Max
µ (E1):
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– If µ ∧
∧

E1 is consistent then, by (IC2) we have that 4dD,Max
µ (E1) ≡

µ ∧
∧

E1 ≡ µ ∧
∧

Ki:Ki∧µ6|=⊥

Ki. So the fixed point is reached after two

iterations, since for every j, K2
j ≡ K∗

j ≡ µ ∧
∧

Ki:Ki∧µ6|=⊥

Ki.

– If µ∧
∧

E1 is not consistent then by definition of the operator,4dD,Max
µ (E2) ≡

µ. Since every K1
j is consistent with µ, by (R1), this is the result of the re-

vision, and K2
j ≡ K1

j ∧ µ. Since K1
j |= µ, we have that K2

j ≡ K1
j ≡ K∗

j .
So we have that for all j either K∗

j ≡ Kj ∧ µ if consistent, otherwise
K∗

j ≡ µ, and the fixed point is reached after one iteration.

2

Proof of Proposition 10: If µ ∧
∧

E is consistent, then by (IC2) we have that
4dD,GMax

µ (E) ≡ µ ∧
∧

E. Then for every j, K1
j ≡ Kj ∗4 4dD,GMax

µ (E) ≡ 4dD,GMax
µ (E)

(consequence of (R1)). So the fixed point is reached after one iteration, and for every
j, K∗

j ≡ µ ∧
∧

j Kj .

Suppose now that µ∧
∧

E is not consistent. [∆µ(E0)] = {ω |= µ : @ω′ : #({j : ω′ |=
K0

j }) > #({j : ω |= K0
j })}. Using the notation a = maxω|=µ #({j : ω |= K0

j },
we get that [∆µ(E0)] = {ω |= µ : #({j : ω |= K0

j }) = a. For each j, we have
K1

j ≡ K0
j ∗4 4dD,GMax

µ (E0), i.e.:

• if K0
j ∧4dD,GMax

µ (E0) 6≡ ⊥ then K1
j ≡ K0

j ∧4dD,GMax
µ (E0).

• if K0
j ∧ 4dD,GMax

µ (E0) ≡ ⊥ then by definition of the corresponding revision
operator, we get K1

j ≡ 4dD,GMax
µ (E0). Let b denote the number of bases in this

case.

It is easy to see that [∆µ(E1)] = {ω |= µ : @ω′ : #({j : ω′ |= K1
j }) > #({j : ω |=

K1
j })} = {ω |= µ : #({j : ω |= K1

j }) = a + b. So [∆µ(E1)] = [∆µ(E0)]. Then
the revision of each base lets it unchanged, so for every j K2

j ≡ K1
j , which means that

E2 ↔ E1, i.e., E1 = E∗. 2

Proof of Proposition 11: The first implication is straightforward by Definition 13.
As to the second implication, suppose that 4µ(Ei+1

c ) ≡ 4µ(Ei
c). For any j, we have

Ki+2
j ≡ Ki+1

j ∗j 4µ(Ei+1
c ) ≡ Ki+1

j ∗j 4µ(Ei
c).

From Proposition 8, we have that Ki+1
j |= 4µ(Ei

c). Hence, using property (R2) of the
revision operator, we get Ki+2

j ≡ Ki+1
j . Therefore, Ei+1

c ↔ Ei+2
c . 2

Proof of Proposition 12: Let us first consider credulous operators:

(IC0) Since the underlying merging operator is an IC merging operator, it satisfies
(IC0), so ∀i,4µ(Ei) |= µ, and in particular for Ei = E∗.
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(IC1) If µ is consistent, then since4 is an IC merging operator,4µ(E∗) is consistent.

(IC2) Suppose that µ ∧
∧

E0 6≡ ⊥ and that 4 is an IC merging operator. From (IC2)
we have ∆µ(E0) ≡ µ ∧

∧
E0. So for a given j, K1

j ≡ ∆∆µ(E0)(K0
j ) ≡

µ ∧
∧

E0. Similarly, since µ ∧
∧

E1 ≡ µ ∧
∧

E0 6≡ ⊥, we have ∆µ(E1) ≡
µ ∧

∧
E1 ≡ µ ∧

∧
E0 ≡ ∆µ(E0). Then K2

j ≡ ∆∆µ(E1)(K1
j ) ≡ µ ∧

∧
E1 ≡

µ ∧
∧

E0 ≡ K1
j .

(IC3) Straightforward from the definition of credulous operators and the IC merging
properties of the merging operator.

(IC7) If ∆ is an IC merging operator, then for every profile E, ∆µ1(E) ∧ µ2 |=
∆µ1∧µ2(E). So, for a given profile E, we get ∆µ1(E

∗) ∧ µ2 |= ∆µ1∧µ2(E
∗).

(IC8) If ∆ is an IC merging operator, then for every profile E, if ∆µ1(E) ∧ µ2 is
consistent, then ∆µ1∧µ2(E) |= ∆µ1(E) ∧ µ2. With E = E∗, this shows that
(IC8) holds for credulous operators.

Let us now consider skeptical operators:

(IC0) Since the underlying merging operator is an IC merging operator, it satisfies
(IC0), so ∀i,4µ(Ei) |= µ, and in particular for Ei = E∗.

(IC1) If µ is consistent, then since4 is an IC merging operator,4µ(E∗) is consistent.

(IC2) Suppose that µ ∧
∧

E0 6≡ ⊥ and that 4 is an IC merging operator. We know
that

∧
E0 is consistent. Since 4 satisfies (IC2) we have ∆µ(E0) ≡ µ ∧

∧
E0.

So, for a given j, we have K1
j ≡ ∆K0

j
(∆µ(E0)) ≡ µ ∧

∧
E0. Similarly, since

µ ∧
∧

E1 ≡ µ ∧
∧

E0 6≡ ⊥, we have ∆µ(E1) ≡ µ ∧
∧

E1 ≡ µ ∧
∧

E0 ≡
∆µ(E0). Then K2

j ≡ ∆K1
j
(∆µ(E1)) ≡ µ ∧

∧
E1 ≡ µ ∧

∧
E0 ≡ K1

j .

(IC3) Straightforward from the definition of credulous operators and the IC merging
properties of the merging operator.

(IC7) If ∆ is an IC merging operator, then for every profile E, ∆µ1(E) ∧ µ2 |=
∆µ1∧µ2(E). Just take E = E∗.

(IC8) If ∆ is an IC merging operator, then for every profile E, if ∆µ1(E) ∧ µ2 is
consistent, then ∆µ1∧µ2(E) |= ∆µ1(E) ∧ µ2. Just take E = E∗.

2

Proof of Proposition 13: The definition is a straightforward consequence of Propo-
sition 9. As to the postulates, for the ease of reading, we use indexes j1 for the bases
Kj1 of E1, and indexes j2 for the bases Kj2 of E2.

(IC0-IC3),(IC7),(IC8) see Proposition 12.

(IC4) Assume that K1 |= µ, K2 |= µ. Suppose that µ 6≡ ⊥ (if it is not the case the
result holds trivially). We can compute ∗∆dD,Max

µ ((K1,K2)) from Proposition 9:
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• If µ ∧
∧

j:Kj∧µ6≡⊥Kj 6≡ ⊥, then µ ∧
∧

E is consistent. Now by (IC2)
(cf. Proposition 12), we get : ∗∆dD,Max

µ ((K1,K2)) ∧ K1 ≡ K1 ∧ K2 ≡
∗∆dD,Max

µ ((K1,K2)) ∧K2 6|= ⊥.

• Otherwise, ∗∆dD,Max
µ ((K1,K2)) ≡ µ. Hence ∗∆dD,Max

µ ((K1,K2)) ∧K1 ≡
K1 6|= ⊥ and ∗∆dD,Max

µ ((K1,K2)) ∧K2 ≡ K2 6|= ⊥.

(IC5) From Proposition 9 we can compute ∗∆dD,Max
µ (E1), ∗∆dD,Max

µ (E2), and
∗∆dD,Max

µ (E1 t E2):

• If µ ∧
∧

j1:µ∧Kj1 6≡⊥
Kj1 is consistent, and if µ ∧

∧
j2:µ∧Kj2 6≡⊥

Kj2 is
also consistent, then we get ∗∆dD,Max

µ (E1) ≡ µ ∧
∧

j1:µ∧Kj1 6≡⊥
Kj1 , and

∗∆dD,Max
µ (E2) ≡ µ ∧

∧
j2:µ∧Kj2 6≡⊥

Kj2 . If µ ∧
∧

j:µ∧Kj 6≡⊥Kj is consis-
tent, then ∗∆dD,Max

µ (E1 t E2) ≡ µ ∧
∧

j:µ∧Kj 6≡⊥Kj ≡ ∗∆dD,Max
µ (E1) ∧

∗∆dD,Max
µ (E2). Otherwise, ∗∆dD,Max

µ (E1) ∧ ∗∆dD,Max
µ (E2) is not consistent,

so (IC5) holds.

• Otherwise, µ ∧
∧

j:µ∧Kj 6≡⊥Kj is not consistent. Hence ∗∆dD,Max
µ (E1 t

E2) ≡ µ. Since ∗∆dD,Max
µ (E1) ∧ ∗∆dD,Max

µ (E2) |= µ (from postulate (IC0),
cf. Proposition 12), (IC5) also holds.

(IC6) Suppose that E1 and E2 are such that µ ∧
∧

j1:µ∧Kj1 6≡⊥
Kj1 is not consis-

tent, and µ ∧
∧

j2:µ∧Kj2 6≡⊥
Kj2 is consistent, but not equivalent to µ. In this

case, we have ∗∆dD,Max
µ (E1) ≡ µ and ∗∆dD,Max

µ (E2) ≡ µ ∧
∧

j2:µ∧Kj2 6≡⊥
Kj2 ,

so ∗∆dD,Max
µ (E1) ∧ ∗∆dD,Max

µ (E2) ≡ ∗∆dD,Max
µ (E2) (from (IC0)). Since µ ∧∧

j2:µ∧Kj2 6≡⊥
Kj2 is consistent, but not equivalent to µ, we have µ 6|= ∗∆dD,Max

µ (E1)∧
∗∆dD,Max

µ (E2). Moreover, µ ∧
∧

j:µ∧Kj 6≡⊥Kj is not consistent (because of E1),
so ∗∆dD,Max

µ (E1 t E2) ≡ µ. So (IC6) does not hold.

(Maj) Let us consider the following counter-example. We consider a language with
two propositional symbols a, b and two bases K1 ≡ ¬a ∧ ¬b and K2 ≡ ¬a ∧ b,
with µ ≡ >, we have ∗∆dD,Max

µ (E1tE2 t . . . t E2︸ ︷︷ ︸
m

) ≡ ∗∆dD,Max
µ (E1tE2) ≡ >,

and ∗∆dD,Max
µ (E2) ≡ ¬a ∧ b.

(Arb) Suppose that ∗∆dD,Max
µ1

(K1) ≡ ∗∆dD,Max
µ2

(K2), ∗∆dD,Max
µ1⇔¬µ2

(K1 tK2) ≡ (µ1 ⇔
¬µ2), µ1 6|= µ2, and that µ2 6|= µ1. Then we have µ1 ∧ K1 6≡ ⊥: otherwise
this would mean ∗∆dD,Max

µ1
(K1) ≡ µ1, and since ∗∆dD,Max

µ1
(K1) ≡ ∗∆dD,Max

µ2
(K2),

we would get µ1 |= µ2. Similarly, we have µ2 ∧K2 6≡ ⊥. With Proposition 9
we obtain µ1 ∧K1 ≡ ∗∆dD,Max

µ1
(K1) ≡ ∗∆dD,Max

µ2
(K2) ≡ µ2 ∧K2. This leads to

µ1 ∧ µ2 ∧K1 ∧K2 6≡ ⊥. To show that ∗∆dD,Max
µ1∨µ2

(K1 tK2) ≡ ∗∆dD,Max
µ1

(K1),
it remains to show that (µ1 ⊕ µ2) ∧K1 ∧K2 ≡ ⊥. It is enough to notice that
µ1∧¬µ2∧K1∧K2 ≡ µ2∧¬µ2∧K2 ≡ ⊥, and similarly for ¬µ1∧µ2∧K1∧K2.

2
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Proof of Proposition 14: The first point easily comes from Proposition 10. The IC
properties of 4dD,GMax

µ = 4dD,Σ
µ are shown in [23]. 2

Proof of Proposition 15: For the credulous CHIM operator ∗4dH,Σ
µ the proofs are:

(IC0-IC3),(IC7),(IC8) see Proposition 12.

(IC5) The example in the following table is a counter-example to (IC5). Consider
a language with three propositional symbols {a, b, c} and the profiles E1 =
(K1,K2), E2 = (K3,K4), and E = E1 t E2.

W Ki
1 Ki

2 Ki
3 Ki

4 Ei Ki
1 Ki

2 Ei
1 Ki

3 Ki
4 Ei

2

(0,0,0) 2,1,1 3,2,2 0,1,1 1,1,1 6,5,5 2,1 3,2 5,3 0,0,0 1,1,1 1,1,1
(0,0,1) 1,0,0 2,1,1 1,0,0 0,0,0 4,1,1 1,0 2,1 3,1 1,1,1 0,0,0 1,1,1
(0,1,0) 1,0,2 2,3,3 1,0,2 0,0,2 4,3,9 1,0 2,1 3,1 1,1,1 0,0,0 1,1,1
(1,0,0) 3,2,2 2,1,1 1,1,1 1,1,1 7,5,5 3,2 2,1 5,3 1,1,1 1,1,2 2,2,3
(1,0,1) 2,1,1 1,0,0 1,0,0 0,0,0 4,1,1 2,1 1,0 3,1 1,2,2 0,0,1 1,2,3
(1,1,0) 2,1,3 1,2,2 1,1,2 1,1,2 5,5,9 2,1 1,0 3,1 1,2,2 1,1,1 2,3,3

The interpretation (a, b, c) = (0, 1, 0) is a model of ∗∆dH,Σ
µ (E1)∧ ∗∆dH,Σ

µ (E2),
but not of ∗∆dH,Σ

µ (E1 t E2).

(IC6) The example above is a counter-example to (IC6), since the interpretation (a, b, c) =
(1, 0, 1) is a model of ∗∆dH,Σ

µ (E1 tE2) but not of ∗∆dH,Σ
µ (E1) ∧ ∗∆dH,Σ

µ (E2).

(Maj) Consider two given profiles E1 and E2. For a given ω, we have ∀i, dΣ(ω, Ei
1 t

Ei
2 t . . . t Ei

2︸ ︷︷ ︸
m

) = dΣ(ω, Ei
1) + m.dΣ(ω, Ei

2). So for a sufficiently large m

(for instance by choosing an m > maxω,ω′∈W d(ω, ω′)), we have ∀i,∆µ(Ei
1 t

Ei
2 t . . . t Ei

2︸ ︷︷ ︸
m

) ≡ ∆µ(Ei
2). By choosing a sufficiently large i (such that the

fixed points of (∆µ(Ei
1 tEi

2 t . . . t Ei
2︸ ︷︷ ︸

m

))i≥0 and of (∆µ(Ei
2))i≥0 are reached),

we get the postulate (Maj).

(Arb) The following table shows a counter-example to the (Arb) postulate. We con-
sider three propositional symbols and the profile E = (K1,K2).

W µ1 µ2 Ki
1 Ki

2 Ei ∗∆dH,Σ
µ1

(K1) ∗∆dH,Σ
µ2

(K2)
(0,0,0) 0 0 1 0 1 0 0
(0,0,1) 0 0 2 1 3 1 1
(0,1,0) 1 0 0 1 1 1 1
(0,1,1) 1 1 1 2 3 2 2
(1,0,0) 0 1 2 1 3 1 1
(1,0,1) 0 0 3 2 5 2 2
(1,1,0) 0 0 1 0 1 0 0
(1,1,1) 1 1 2 1 3 1 1
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For the skeptical CHIM operator 4∗ dH,Σ
µ , the proofs are:

(IC0-IC3),(IC7),(IC8) see Proposition 12.

(IC5) The following table shows a counter-example to (IC5). We consider a lan-
guage with two propositional symbols and the profiles E1 = (K1,K2), E2 =
(K3,K4), and E = E1 t E2.

W Ki
1 Ki

2 Ki
3 Ki

4 Ei
∆µ(Ei) Ki

1 Ki
2 Ei

1∆µ(Ei
1) Ki

3 Ki
4 Ei

2∆µ(Ei
2)

(0,0) 1,1 1,2 0,1 0,1 21,51 1,1 1,1 21,20 0 0 00

(0,1) 0,0 1,1 0,0 0,0 10,10 0,0 1,2 10,20 0 0 00

(1,0) 1,2 0,1 1,2 1,2 32,72 1,2 0,0 10,20 1 1 21

So, in this case ∆∗ dH,Σ
µ (E1) ∧∆∗ dH,Σ

µ (E2) 6|= ∆∗ dH,Σ
µ (E1 t E2).

(IC6) The following table gives a counter-example to (IC6). We consider a lan-
guage with two propositional symbols and the profiles E1 = (K1,K2), E2 =
(K3,K4), and E = E1 t E2.

W Ki
1 Ki

2 Ki
3 Ki

4 Ei
∆µ(Ei) Ki

1 Ki
2 Ei

1∆µ(Ei
1) Ki

3 Ki
4 Ei

2∆µ(Ei
2)

(0,0) 0 1 1 0 20 0 1 10 1,1,1 0,0,0 10,10,10

(0,1) 1 0 1 0 20 1 0 10 1,2,2 0,0,1 10,21,31

(1,0) 1 2 0 1 41 1 2 31 0,0,0 1,1,1 10,10,10

Here ∆∗ dH,Σ
µ (E1)∧∆∗ dH,Σ

µ (E2) is consistent, and ∆∗ dH,Σ
µ (E1tE2) 6|= ∆∗ dH,Σ

µ (E1)∧
∆∗ dH,Σ

µ (E2).

(Maj) Consider two given profiles E1 and E2. For a given ω we have ∀i, d(ω, Ei
1 t

Ei
2 t . . . t Ei

2︸ ︷︷ ︸
m

) = d(ω, Ei
1) + m.d(ω, Ei

2). So for a sufficiently large m (for in-

stance by choosing m > maxω,ω′∈W d(ω, ω′)), we get ∀i,∆µ(Ei
1tEi

2 t . . . t Ei
2︸ ︷︷ ︸

m

) ≡

∆µ(Ei
2). By choosing a sufficiently large i (such that the fixed points of (∆µ(Ei

1t
Ei

2 t . . . t Ei
2︸ ︷︷ ︸

m

))i≥0 and of (∆µ(Ei
2))i≥0 are reached), we get (Maj).

(Arb) The following table gives a counter-example to (Arb). We consider a language
with three propositional symbols and the profile E = (K1,K2).
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W µ1 µ2 K1 K2 E
∆
∗ dH,Σ
µ1∨µ2

(E)
∆∗ dH,Σ

µ1
(K1) ∆∗ dH,Σ

µ2
(K2)

(0,0,0) 0 0 1 0 10 0 0
(0,0,1) 0 0 2 1 31 1 1
(0,1,0) 1 0 0 1 10 1 1
(0,1,1) 1 1 1 2 31 2 2
(1,0,0) 0 1 2 1 31 1 1
(1,0,1) 0 0 3 2 52 2 2
(1,1,0) 0 0 1 0 10 0 0
(1,1,1) 1 1 2 1 31 1 1

2

Proof of Proposition 16: For the credulous CHIM operator ∗4dH,Max
µ the proofs are:

(IC0-IC3),(IC7),(IC8) see Proposition 12.

(IC5) The following table gives a counter-example to (IC5). We consider a language
with two propositional symbols, and we consider the profiles E1 = (K1,K2),
E2 = (K3,K4), and E = E1 t E2.

W Ki
1 Ki

2 Ki
3 Ki

4 Ei Ki
1 Ki

2 Ei
1 Ki

3 Ki
4 Ei

2

(0,0) 0,1,0 2,1,0 1,1,0 0,1,0 2,1,0 0,1 2,1 2,1 1,1,1 0,0,0 1,1,1
(0,1) 1,0,1 1,0,1 0,0,1 1,2,1 1,2,1 1,0 1,0 1,0 0,0,0 1,1,1 1,1,1
(1,0) 1,0,1 1,0,1 1,2,1 0,0,1 1,2,1 1,0 1,0 1,0 1,2,2 0,0,1 1,2,2

The interpretation (0, 1) is a model of ∗∆dH,Max
µ (E1) ∧ ∗∆dH,Max

µ (E2), but not of
∗∆dH,Max

µ (E1 t E2).

(IC6) The example above is a counter-example to (IC6), since the interpretation (0, 0)
is a model of ∗∆dH,Max

µ (E1 t E2) but not of ∗∆dH,Max
µ (E1) ∧ ∗∆dH,Max

µ (E2).

(Maj) Let us consider the following counter-example. Let us consider a language with
two propositional symbols a and b, and two bases K1 ≡ ¬a∧¬b and K2 ≡ ¬a∧
b, with µ ≡ >, we get ∗∆dH,Max

µ (Ei
1 t Ei

2 t . . . t Ei
2︸ ︷︷ ︸

m

) ≡ ∗∆dH,Max
µ (E1 t E2) ≡

¬a, and ∗∆dH,Max
µ (E2) ≡ ¬a ∧ b.

(Arb) The following table provides a counter-example to (Arb). We consider a lan-
guage with three propositional symbols and the profile E = (K1,K2).
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W µ1 µ2 Ki
1 Ki

2 Ei ∗∆dH,Max
µ1

(K1) ∗∆dH,Max
µ2

(K2)
(0,0,0) 0 0 1 0 1 0 0
(0,0,1) 0 0 2 1 2 1 1
(0,1,0) 1 0 0 1 1 1 1
(0,1,1) 1 1 1 2 2 2 2
(1,0,0) 0 1 2 1 2 1 1
(1,0,1) 0 0 3 2 3 2 2
(1,1,0) 0 0 1 0 1 0 0
(1,1,1) 1 1 2 1 2 1 1

For the credulous CHIM operator ∗4dH,GMax
µ the proofs are:

(IC0-IC3),(IC7),(IC8) see Proposition 12.

(IC5) The following table gives a counter-example to (IC5). We consider a language
with two propositional symbols {a, b}, and the profiles E1 = (K1,K2), E2 =
(K3,K4), and E = E1 t E2.

W Ki
1 Ki

2 Ki
3 Ki

4 Ei

(0,0) 0,1,0 2,1,0 1,1,0 0,1,0 (2,1,0,0),(1,1,1,1),(0,0,0,0)
(0,1) 1,0,1 1,0,1 0,0,1 1,2,1 (1,1,1,0),(2,0,0,0),(1,1,1,1)
(1,0) 1,0,1 1,0,1 1,2,1 0,0,1 (1,1,1,0),(2,0,0,0),(1,1,1,1)

W Ki
1 Ki

2 Ei
1 Ki

3 Ki
4 Ei

2

(0,0) 0,1 2,1 (2,0),(1,1) 1,1,1 0,0,0 (1,0),(1,0),(1,0)
(0,1) 1,0 1,0 (1,1),(0,0) 0,0,0 1,1,1 (1,0),(1,0),(1,0)
(1,0) 1,0 1,0 (1,1),(0,0) 1,2,2 0,0,1 (1,0),(2,0),(2,1)

The interpretation (0, 1) is a model of ∗∆dH,GMax
µ (E1)∧ ∗∆dH,GMax

µ (E2), but not of
∗∆dH,GMax

µ (E1 t E2).

(IC6) The example above is also a counter-example to (IC6), since the interpretation
(0, 0) is a model of ∗∆dH,GMax

µ (E1tE2) but not of ∗∆dH,GMax
µ (E1)∧∗∆dH,GMax

µ (E2).

(Maj) The following table gives a counter-example to (Maj). We consider a language
with two propositional symbols and the profile E = (K1,K2, . . . ,K2︸ ︷︷ ︸

m

).

W Ki
1 Ki

2 ... Ki
2 Ei

∆µ(Ei) Ki
2 Ki

2∆µ(Ki
2)

(0,0) 2,2 0,2 ... 0,2 (2, 0, ..., 0)2,(2, 2, ..., 2)2 0,0 00,00

(0,1) 1,1 1,1 ... 1,1 (1, 1, ..., 1)1,(1, 1, ..., 1)1 1,1 11,11

(1,1) 0,0 1,0 ... 1,0 (1, ..., 1, 0)0,(0, 0, ..., 0)0 1,2 12,22

So we have ∀m, ∗∆dH,GMax
µ (Ei

1 t Ei
2 t . . . t Ei

2︸ ︷︷ ︸
m

) 6|= ∗∆dH,GMax
µ (E2).
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(Arb) The following table shows a counter-example to (Arb). We consider a language
with three propositional symbols, and the profile E = (K1,K2).

W µ1 µ2 Ki
1 Ki

2 Ei ∗∆dH,GMax
µ1 (K1)

∗∆dH,GMax
µ2 (K2)

(0,0,0) 0 0 1 0 (1,0) 0 0
(0,0,1) 0 0 2 1 (2,1) 1 1
(0,1,0) 1 0 0 1 (1,0) 1 1
(0,1,1) 1 1 1 2 (2,1) 2 2
(1,0,0) 0 1 2 1 (2,1) 1 1
(1,0,1) 0 0 3 2 (3,2) 2 2
(1,1,0) 0 0 1 0 (1,0) 0 0
(1,1,1) 1 1 2 1 (2,1) 1 1

For the skeptical CHIM operator 4∗ dH,Max
µ the proofs are:

(IC0-IC3),(IC7),(IC8) see Proposition 12.

(IC5) The following table gives a counter-example to (IC5). Consider a language with
three propositional symbols and the profiles E1 = (K1,K2), E2 = (K3,K4),
and E = E1 t E2.

W Ki
1 Ki

2 Ki
3 Ki

4 Ei
∆µ(Ei) Ei

1∆µ(Ei
1)

Ei
2∆µ(Ei

2)

(0,0,0) 0,0 3,3 1,1 1,1 31,31 31 10

(0,0,1) 1,1 2,2 0,0 2,2 20,20 20 21

(0,1,0) 1,1 2,2 2,2 0,0 20,20 20 21

(1,0,0) 1,1 2,2 2,2 2,2 20,20 20 21

(1,0,1) 2,2 1,1 1,1 1,3 20,31 20 10

(1,1,0) 2,2 1,1 3,3 1,1 31,31 20 32

One can check that ∆∗ dH,Max
µ (E1) ∧∆∗ dH,Max

µ (E2) 6|= ∆∗ dH,Max
µ (E1 t E2).

(IC6) The following table gives a counter-example to (IC6). Consider a language this
three propositional symbols and consider the profiles E1 = (K1), E2 = (K2).

W Ki
1 Ki

2 Ei
∆µ(Ei) ∆µ(Ki

1) ∆µ(Ki
2)

(0,0,0) 2,2 0,1 21,21 1 0
(0,0,1) 1,1 0,0 10,10 0 0
(0,1,0) 1,1 1,2 10,22 0 1
(1,0,0) 2,2 1,2 21,21 1 1
(1,0,1) 1,1 1,1 10,10 0 1
(1,1,0) 1,1 2,3 21,32 0 2

(Maj) We have that ∀m,∆dH,Max
µ (Ei

1 t Ei
2 t . . . t Ei

2︸ ︷︷ ︸
m

) ≡ ∆µ(E1 t E2). Straight-

forwardly, this property remains true at each iteration, so ∀m,∆∗ dH,Max
µ (Ei

1 t
Ei

2 t . . . t Ei
2︸ ︷︷ ︸

m

) ≡ ∆∗ dH,Max
µ (E1 t E2). The above table that gives a counter-

example to (IC6) shows a case where ∆∗ dH,Max
µ (E1 t E2) 6|= ∆∗ dH,Max

µ (E2).
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(Arb) The following table gives a counter-example to (Arb). Consider a language
with three propositional symbols, and consider the profile E = (K1,K2).

W µ1 µ2 K1 K2 E
∆
∗ dH,Max
µ1∨µ2

(E)
∆∗ dH,Max

µ1 (K1) ∆∗ dH,Max
µ2 (K2)

(0,0,0) 0 0 1 0 10 0 0
(0,0,1) 0 0 2 1 21 1 1
(0,1,0) 1 0 0 1 10 1 1
(0,1,1) 1 1 1 2 21 2 2
(1,0,0) 0 1 2 1 21 1 1
(1,0,1) 0 0 3 2 32 2 2
(1,1,0) 0 0 1 0 10 0 0
(1,1,1) 1 1 2 1 21 1 1

For the skeptical CHIM operator 4∗ dH,GMax
µ the proofs are:

(IC0-IC3),(IC7),(IC8) see Proposition 12.

(IC5) The following tables give a counter-example to (IC5). Consider a language with
two propositional symbols, and consider the profiles E1 = (K1,K2), E2 =
(K3,K4), et E = E1 t E2.

W Ki
1 Ki

2 Ki
3 Ki

4 Ei
∆µ(Ei)

(0,0) 1,1 1,1 1,1 0,1 (1, 1, 1, 0)1,(1, 1, 1, 1)0
(0,1) 0,0 0,0 0,0 1,2 (1, 0, 0, 0)0,(2, 0, 0, 0)1
(1,0) 0,0 0,0 1,2 0,0 (1, 0, 0, 0)0,(2, 0, 0, 0)1

W Ki
1 Ki

2 Ei
1∆µ(Ei

1)
Ki

3 Ki
4 Ei

2∆µ(Ei
2)

(0,0) 1 1 (1, 1)1 1,1,1 0,0,0 (1, 0)0,(1, 0)0,(1, 0)0
(0,1) 0 0 (0, 0)0 0,0,0 1,1,1 (1, 0)0,(1, 0)0,(1, 0)0
(1,0) 0 0 (0, 0)0 1,2,2 0,0,1 (1, 0)0,(2, 0)1,(2, 1)1

We get ∆∗ dH,GMax
µ (E1) ∧∆∗ dH,GMax

µ (E2) 6|= ∆∗ dH,GMax
µ (E1 t E2).

(IC6) The example above is also a counter-example to (IC6), since ∆∗ dH,GMax
µ (E1) ∧

∆∗ dH,GMax
µ (E2) is consistent, and ∆∗ dH,GMax

µ (E1tE2) 6|= ∆∗ dH,GMax
µ (E1)∧∆∗ dH,GMax

µ (E2).

(Maj) The following table gives a counter-example to (Maj). Consider a language
with two propositional symbols, and consider the profile E = (K1,K2, . . . ,K2︸ ︷︷ ︸

m

).

W Ki
1 Ki

2 Ei
∆µ(Ei) Ki

2 (Ki
2)∆µ(Ki

2)

(0,0) 2,2 0,1 (2, 0, ..., 0)2,(2, 1, ..., 1)2 0,0 00,00

(0,1) 1,1 1,2 (1, 1, ..., 1)1,(2, ..., 2, 1)1 1,1 11,11

(1,1) 0,0 1,1 (1, ..., 1, 0)0,(1, ..., 1, 0)0 1,2 12,22
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We have ∀m,∆∗ dH,GMax
µ (E1 t E2 t . . . t E2︸ ︷︷ ︸

m

) 6|= ∆∗ dH,GMax
µ (E2).

(Arb) The following table is a counter-example to (Arb). Consider a language with
three propositional symbols, and consider the profile E = (K1,K2).

W µ1 µ2 K1 K2 E
∆
∗ dH,GMax
µ1∨µ2

(E)
∆∗ dH,GMax

µ1 (K1) ∆∗ dH,GMax
µ2 (K2)

(0,0,0) 0 0 1 0 (1, 0)0 0 0
(0,0,1) 0 0 2 1 (2, 1)1 1 1
(0,1,0) 1 0 0 1 (1, 0)0 1 1
(0,1,1) 1 1 1 2 (2, 1)1 2 2
(1,0,0) 0 1 2 1 (2, 1)1 1 1
(1,0,1) 0 0 3 2 (3, 2)2 2 2
(1,1,0) 0 0 1 0 (1, 0)0 0 0
(1,1,1) 1 1 2 1 (2, 1)1 1 1

2
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