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Abstract. We consider, in this paper, the problem of knowledge base
merging with integrity constraints. We propose a logical characterization
of those operators and give a representation theorem in terms of pre-
orders on interpretations. We show the close connection between belief
revision and merging operators and we show that our proposal extends
the pure merging case (i.e. without integrity constraints) we study in a
previous work. Finally we show that Liberatore and Schaerf commutative
revision operators can be seen as a special case of merging.

1 Introduction

An important issue of distributed knowledge systems is to be able to determine
a global consistent state (knowledge) of the system. Consider, for example, the
problem of the combination of several expert systems. Suppose that each expert
system codes the knowledge of an human expert. To build an expert system it
is reasonable to try to combine all these knowledge bases in a single knowledge
base that expresses the knowledge of the expert group. This process allows to
discover new pieces of knowledge distributing among the sources. For example
if an expert knows that a is true and another knows that a — b holds, then
the “synthesized” knowledge knows that b is true whereas none of the expert
knows it. This was called implicit knowledge in [8]. However, simply put these
knowledge bases together is a wrong way since there could be contradictions
between some experts.

Some logical characterizations of merging have been proposed [18,19,13,14,
16,15,11]. In this paper we extend these works by proposing a logical char-
acterization when the result of the merging has to obey to a set of integrity
constraints.

We define two subclasses of merging operators, namely majority merging
and arbitration operators. The former striving to satisfy a maximum of protag-
onists, the latter trying to satisfy each protagonist to the best possible degree.
In other words majority operators try to minimize global dissatisfaction whereas
arbitration operators try to minimize individual dissatisfaction.

* The proofs have been omitted for space requirements but can be found in the ex-
tended version of this work [12].



We also provide a representation theorem & la Katsuno Mendelzon [9] and
we show the close connections between belief revision and merging operators.

In section 2 we state some notations. In section 3 we propose a logical def-
inition of merging operators with integrity constraints, we define majority and
arbitration operators and give a model-theoretic representation of those oper-
ators. In section 4 we define two families of merging operators illustrating the
logical definition. In section 5 we show the connections with other related works,
first we show the close connection between belief revision and merging opera-
tors, then we show that this work extends the one of [11]. Finally we show that
Liberatore and Schaerf commutative revision operators can be seen as a special
case of merging operators. In section 6 we give some conclusions and discuss
future work.

2 Preliminaries

We consider a propositional language £ over a finite alphabet P of propositional
atoms. An interpretation is a function from P to {0,1}. The set of all the in-
terpretations is denoted Y. An interpretation I is a model of a formula if and
only if it makes it true in the usual classical truth functional way. Let ¢ be a
formula, mod(p) denotes the set of models of ¢, i.e. mod(p) = {I € W I | ¢}.

A knowledge base K is a finite set of propositional formulae which can be
seen as the formula ¢ which is the conjunction of the formulae of K.

Let ¢,...,%, be n knowledge bases (not necessarily different). We call
knowledge set the multi-set ¥ consisting of those n knowledge bases: ¥ =
{@1s---,¢,}. We note A ¥ the conjunction of the knowledge bases of ¥, i.e.
AP =@ A---Agp,. The union of multi-sets will be noted L. Knowledge bases
will be denoted by lower case Greek letters and knowledge sets by upper case
Greek letters.

Since an inconsistent knowledge base gives no information for the merging
process, we will suppose in the rest of the paper that the knowledge bases are
consistent.

Definition 1. A knowledge set ¥ is consistent if and only if \ ¥ is consistent.
We will use mod(¥) to denote mod(A\¥) and write I =¥ for I € mod(¥P).

Definition 2. Let ¥;,¥, be two knowledge sets. ¥; and ¥y are equivalent, noted
U, < W,, iff there exists a bijection f from ¥y = {@l,..., 0L} to Uy = {4}, ...,
W2} such that F f(p) < .

A pre-order < over W is a reflexive and transitive relation on W. A pre-order
is total if VI, J e W I < JorJ<I.Let < be a pre-order over W, we define <
asfollows: I< Jif I<Jand J £ I,and ~as I ~Jif I < J and J <I. We
wrote I € min(mod(yp), <) iff I = p and VJ € mod(p) I < J.

By abuse if ¢ is a knowledge base, ¢ will also denote the knowledge set
¥ = {}. For a positive integer n we will denote ¥" the multi-set {¥, ..., ¥}.

————
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3 Merging with Integrity Constraints

We first state a logical definition for merging with integrity constraints operators
(IC merging operators for now on), that is we give a set of properties an operator
has to satisfy in order to have a rational behaviour concerning the merging.

In this work, the result of the merging has to obey a set of integrity constraints
where each integrity constraint is a formula. We suppose that these constraints
do not contradict each others and we bring them together in a knowledge base
u. This knowledge base represents the constraints for the result of merging the
knowledge set ¥, not for the knowledge bases in ¥. Thus a knowledge base ¢
in ¥ does not obey necessarily to the constraints. We consider that integrity
constraints has to be true in the knowledge base resulting of merging ¥, that is
the result is not only consistent with the constraints (as it is often the case in
databases), but it has to imply the constraints.

We will consider operators /A mapping a knowledge set ¥ and a knowledge
base p to a knowledge base A, (¥) that represents the merging of the knowledge
set ¥ according to the integrity constraints p.

Definition 3. A is an IC merging operator if and only if it satisfies the follow-
ing postulates:

(IC0) Au() by
(IC1) If p is consistent, then /\,(¥) is consistent

(IC2) If NV is consistent with p, then A, (¥) = AP A p

(IC3) If U« Y, and M1 < U2, then Aul (Wl) <« Auz (W2)

(IC4) If o p and ¢+ p, then Ay (U P) Ak L= A (@UP)AYF L
(IC5) AL(T) AAL(P2) F AT LD,)

(IC6) If AL(F1) AN AL(P) is consistent, then A, (W1 UWs) F AL (P1) A AL (P,)
(ICT) Ap,(F) Apz b Dpyaps (P)

(IC8) If AL, (P) A po is consistent, then Ay au, (F) B AL, (D)

The meaning of the postulates is the following: (IC0) assures that the result of
the merging satisfies the integrity constraints. (IC1) states that if the integrity
constraints are consistent, then the result of the merging will be consistent.
(IC2) states that if possible, the result of the merging is simply the conjunction
of the knowledge bases with the integrity constraints. (IC3) is the principle of
irrelevance of syntax, i.e. if two knowledge sets are equivalent and two integrity
constraints bases are logically equivalent then the knowledge bases result of the
two merging will be logically equivalent. (IC4) is the fairness postulate, the point
is that when we merge two knowledge bases, merging operators must not give
preference to one of them. (IC5) expresses the following idea: if a group ¥;
compromises on a set of alternatives which I belongs to, and another group ¥,
compromises on another set of alternatives which contains I, so I has to be in
the chosen alternatives if we join the two groups. (IC5) and (IC6) together state
that if you could find two subgroups which agree on at least one alternative,
then the result of the global arbitration will be exactly those alternatives the
two groups agree on. (IC5) and (IC6) have been proposed by Revesz [19] for



weighted model-fitting operators. (IC7) and (IC8) are a direct generalization of
the (R5-R6) postulates for revision. They states that the notion of closeness is
well-behaved (see [9] for a full justification).

Now we define two merging operators subclasses, namely majority merging
operators and arbitration operators.

A majority merging operator is an IC merging operator that satisfies the
following majority postulate:

(Maj) Eln AN (Wl L WQ”) |_ Au(glg)

This postulate expresses the fact that if an opinion has a large audience, it
will be the opinion of the group.

An arbitration operator is an IC merging operator that satisfies the following
postulate:

Apy (1) € Dy (p2)

(Arb) Apyespa (01 U py) € (1 > —pan)
w1 ¥ ope
w2 ¥

= Apivis (o1 Uws) € Ay, (o)

This postulate ensures that this is the median possible choices that are pre-
ferred.

Now that we have a logical definition of IC merging operators, we will define
a representation theorem that give a more intuitive way to define IC merging
operators. More precisely we show that to each IC merging operator corresponds
a family of pre-orders on possible worlds. Let’s first define the following;:

Definition 4. A syncretic assignment is a function mapping each knowledge set
¥ to a total pre-order <g over interpretations such that for any knowledge sets
U, Uy, W and for any knowledge bases oy, py:

LIfIEYand JEY, then I ~g J

CIfI =P and J £, then I <g J

If ¥ = ¥, then <¢,=<w,

- VI IZ %1 3J ':(p2 J S‘Pl'—"/’2 I

IfI S‘P1 J and I Slpz J; then I SWlI_IlF2 J
LI I <y, Jand I <g, J, then I <g,1w, J

D G W~

A majority syncretic assignment is a syncretic assignment which satisfies the
following:

7. If I <g, J, then In I <g, g,~ J

A fair syncretic assignment is a syncretic assignment which satisfies the follow-
mng:

<4 J
8 I<y J =1 <404, J
J Zp U, J'



The following theorem states that these conditions on the assignment corre-
sponds to the properties of the merging operator:

Theorem 1. An operator is an IC merging operator (respectively IC majority
merging operator or IC arbitration operator) if and only if there exists a syn-
cretic assignment (respectively magjority syncretic assignment or fair syncretic
assignment) that maps each knowledge set ¥ to a total pre-order <g such that

mod(,,(¥)) = min(mod(u), <u).

As pointed out by D. Makinson (personal communication), this definition of
merging operators from such assignments can be compared to the framework of
Social Choice Theory [2,10,17]. The aim of Social Choice Theory is to aggregate
individual choices into a social choice, i.e. to find, for a given set of agents (cor-
responding to our knowledge sets) with individual preference relations, a social
preference relation which reflects the preferences of the set of agents. It turns
out that the conditions 5 and 6 of the syncretic assignment are known in this
framework as the Pareto conditions and are widely seen as desirable. This bring
an additional support to postulates (IC5) and (IC6) that correspond respectively
to conditions 5 and 6.

We will show in the next section that the set of postulates (IC0-IC8) is
consistent by given two families of operators satisfying these postulates. That
is we do not demand to much to merging operators. On the other hand these
postulates are sufficiently strong to rule out basic merging methods. For example
we can define a merging operator a la full meet revision, that is:

_ | WA pif consistent
Au(¥) = {u otherwise
But this operator is not an IC merging operator since it does not satisfy (IC6).
An other basic merging method generally accepted is the conjunction of the
knowledge bases if consistent and their disjunction otherwise, the generalization
of this operator in the presence of integrity constraints is the following, if ¥ =
{5 0n}:
A @; A pif consistent, else
AL(P) = ¢V g; A pif consistent
7 otherwise

This operator is not an IC merging operator since it does not satisfy (IC6).

In [5] Benferhat et al. proposed merging operators in the possibility theory
framework and gave their syntactic counterpart. Their operators merge two pos-
sibility distributions in a new one. Therefore the nature of the information they
merge is very different from knowledge sets. Nevertheless one can identify their
set of possibility distributions with a knowledge set in a natural way. In this case,
their operators do not satisfy (IC4) nor (IC6). However with some strong con-
straints on the possibility distributions their LUK operator is a majority merging
operator.



4 Examples of Operators

We define in this section two families of operators. The first one, the X' family,
is a family of majority merging operators. The second one, the Gmaz family,
gives arbitration operators.

We will suppose here that we dispose of a distance between interpretations
(possible worlds), that is a function d : W x W — N such that d(I,J) = d(J, I)
and d(I,J)=0iff I = J.

From now on we define the distance between an interpretation I and a knowl-
edge base ¢ in the following way: d(I, ) = min;_,d(I, J)

Definition 5. Let ¥ be a knowledge set and let I be an interpretation we de-
fine the distance between an interpretation and a knowledge set as: ds(I,¥) =
> ocw AL, ¢). Then we have the following pre-order: I <z J iff ds(I,¥) <
ds(J,¥). And the operator A* is defined by: mod(A}; (¥)) = min(mod(u), <y).

Theorem 2. A% is an IC majority merging operator.

Definition 6. Let ¥ be a knowledge set. Suppose W = {¢, ..., }. For each in-
terpretation I we build the list (d! .. .dL) of distances between this interpretation
and the n knowledge bases in ¥, i.e. dJI. =d(I,¢p;). Let LY be the list obtained
from (df ...dL) by sorting it in descending order. Let <jc, be the lexicographical
order between sequences of integers (of the same length), we define the following
pre-order: T SgM‘”” J iff L? <lex L?. And the operator AMa% s defined
by:  mod(AGM* (W) = min(mod(p), <GM**).

AG’Maz

Theorem 3. is an IC arbitration operator.

We now give a “concrete” merging example and illustrate the behaviour of
the two families of operators defined above it. We will choose as distance for the
operators the Dalal distance [6]. The Dalal distance between two interpretations
is the number of propositional letters on which the two interpretations differ.

Example: At a meeting of a block of flats co-owners, the chairman pro-
poses for the coming year the construction of a swimming-pool, a tennis-court
and a private-car-park. But if two of these three items are build, the rent will
increase significantly. We will denote by S, T, P respectively the construction of
the swimming-pool, the tennis-court and the private-car-park. We will denote I
the rent increase.

The chairman outlines that build two items or more will have an important
impact on the rent: p=((SAT)V(SAP)V(TAP)) =1

There is four co-owners ¥ = {¢; L, Ly; Lig, }. Two of the co-owners want to
build the three items and don’t care about the rent increase: ¢; = ¢, = SATAP.
The third one thinks that build any item will cause at some time an increase of
the rent and want to pay the lowest rent so he is opposed to any construction:
3 = S A—=T A—P A—I. The last one thinks that the flat really needs a tennis-
court and a private-car-park but don’t want a high rent increase : ¢, = TAPA-I.



The propositional letters S, T, P,I will be considered in that order for the
valuations:
mod(p) =W\ {(0,1,1,0),(1,0,1,0),(1,1,0,0),(1,1,1,0)}
mOd((pl) = {(17 17 17 1)7 (17 17 70)
mOd((pii) = {(07 07 07 0)}

We sum up the calculations in table 1. The lines shadowed correspond to the
interpretations rejected by the integrity constraints. Thus the result has to be
found among the interpretations that are not shadowed.

Table 1. Distances

Y1 P2 3 Pa dists distgmax
(0,0,0,0) 3 3 0 2 8 (3,3,2,0)
(0,0,0,1) 3 3 1 3 10 (3,3,3,1)
(0,0,1,0) 2 2 1 1 6 (2,2,1,1)
(0,0,1,1) 2 2 2 2 8 (2,2,2,2)
(0,1,0,0) 2 2 1 1 6 (2,2,1,1)
(0,1,0,1) 2 2 2 2 8 (2,2,2,2)
(0,1,1,0) 1 1 2 0 4 (2,1,1,0)
(0,1,1,1) 1 1 3 1 6 (3,1,1,1)
(1,0,0,0) 2 2 1 2 7 (2,2,2,1)
(1,0,0,1) 2 2 2 3 9 (3,2,2,2)
(1,0,1,0) 1 1 2 1 5 (2,1,1,1)
(1,0,1,1) 1 1 3 2 7 (3,2,1,1)
(1,1,0,0) 1 1 2 1 5 (2,1,1,1)
(1,1,0,1) 1 1 3 2 7 (3,2,1,1)
(1,1,1,0) 0 0 3 0 3 (3,0,0,0)
(1,1,1,1) 0 0 4 1 5 (4,1,0,0)

With AGMe a5 merging criterion mod(A$M*(¥)) = {(0,0,1,0), (0,1,0,0)},
so the decisions that best fit the group and that are allowed by the integrity
constraints are to build either the tennis-court or the private-car-park, without
increase the rent. Whereas if one takes the decision according to the majority
wishes then with the A% operator we have mod(A}; (¥)) = {(1,1,1,1)}, and the
decision that satisfies the majority of the group is to build the three items and
to increase the rent.

This majority “vote” seems to be more “democratic” that the other method. For
example in this case it works only if ¢ accepts to conform to the majority wishes
that is strongly opposed to its own. But ¢; could decide to quit the co-owners
committee, and the works will perhaps not carry on because of a lack of money.
So if a decision, like in this example or like in a peace agreement or in a price



agreement in a competitive market, requires the approval of all the members an
arbitration method like A“M2% seems more adequate.

5 Connections with Related Works

5.1 Belief Revision

We show in this section that merging operators are related to AGM belief revision
operators [1,7,9], the first result is easy to prove:

Theorem 4. If A is an IC merging operator, then the operator o, defined as
wopu=N,(p), is an AGM revision operator.

Conversely, we can wonder if we can build a merging operator from a given
revision operator. We propose the following definition of a merging operator from
a given revision operator o:

Definition 7.

— Consider the faithful assignment ! corresponding to the revision operator o.

— Define f;([) = n where n is the level where the interpretation I appears in
the <, pre-order. More formally n is the length of the longest chain of strict
inequalities Iy <, ... <, I, with Iy |= ¢ and I,, = 1.

— Define fg(I) from the fg (I) with some given merging method (for example
foI) = 3 cu(fo(D)) if the chosen method is the X method).

— Define I <y J iff f5(I) < f3(J).

— Finally mod(A;,(¥)) = min(mod(u), <v).

The question now is to find the properties of the operator defined if we choose
a particular merging method, for example if we choose the X' method (we get
similar results with a method & la AGMe), that is fg(I) = 3 cu(fo(I)), we
get the following results:

Theorem 5. If a merging operator A° is defined from a revision operator o
and from the X merging method according to definition 7, then the operator A\°
satisfies (IC0O-1C3), (IC5-1C8) and (Maj).

Definition 8. We define f;(¢') by putting fo(¢) = miny— (fo (1))

Theorem 6. If a merging operator A° is defined from a revision operator o
using X merging method according to definition 7, then the operator A° is an
IC magjority merging operator if and only if the faithful assignment satisfies the
following “symmetry”property: fo(¢) = £ ().

We say that a revision operator o is defined from a distance d if

! j.e. an assignment mapping each knowledge base to a pre-order satisfying conditions
1-3 of the syncretic assignment but with knowledge bases instead of knowledge sets

(cf [9)).



— dis a distance, that is d is a function d : W x W — N that satisfies d(I,J) =
d(J,I) and d(I,J) = 0iff I = J.

— Let pbe a knowledge base and I be an interpretation: d(I, ¢) = min j_g d(I, J)

— mod(ypo p) = min(mod(u), <,)

We can show that the only revision operators satisfying the symmetry prop-
erty are those defined from a distance. So as a corollary we have the following:

Theorem 7. A merging operator /\ defined from a revision operator o and the
27 merging method is an IC merging operator if and only if o is defined from a
distance.

5.2 Pure Merging

A logical characterization of merging operators in the case where there is no
integrity constraints was proposed in [11]. We will call this case the pure merging
case.

Definition 9. Let A be an operator mapping a knowledge set ¥ to a knowledge
base A(P). A is a pure merging operator if and only if it satisfies the following
postulates:

(A1) A(®) is consistent

(A2) If ¥ is consistent, then A(¥) = A&

(A3) If ¥, & Wy, then A(W,) < A(D,)

(A4) If oA is not consistent, then A(plL @) ¥ ¢

(A5) A(T) AA(P,) F AP UW,)

(A6) If A(Wy) AN A(P,) is consistent, then AWy LW,) B A(P) A A(P,)

A pure merging operator is a pure majority operator if it satisfies (M7):
(M7) VoIn A@UY)Fo

A pure merging operator is a pure arbitration operator if it satisfies (A7):
(A7) VJ Jpd FoV¥n A(JU") =A(J Uy)

First it is easy to see that the postulates obtain from (ICi) ones when p =
T are nearly the same that those given in [11]. The main differences is that
postulate (IC4) is stronger than (A4) and that postulate (Maj) is stronger than
(MT). Notice also that postulate (Arb) is not expressible when p = T. So there is
no direct relationship between arbitration in the sense of [11] and IC arbitration.
Notice that (A7) expresses only a kind of non-majority rule and thus is not a
direct characterization of arbitration, whereas (Arb) defines in a more positive
manner the arbitration behaviour.

Theorem 8. If A is an IC merging operator, then A+ is a pure merging op-
erator (i.e. it satisfies (A1-A6)). Furthermore if A is an IC magjority merging
operator, then A+ is a pure majority merging operator.



5.3 Liberatore and Schaerf Commutative Revision

This section addresses the links between merging operators and those defined by
Liberatore and Schaerf. The postulates given by Liberatore and Schaerf [13, 14]
for commutative revision are the following:

(LS1) popcrpoyp
(LS2) ¢ A pimplies pop
(LS3) If ¢ A p is satisfiable then ¢ o 4 implies ¢ A p
(LS4) ¢ < u is unsatisfiable iff both ¢ and p are unsatisfiable
(LS5) If p1 ¢ @2 and p1 > po then @1 o py <> @ © o
popu or
(LS6) po(uveh) =< pob or
(pop) V(pob)
(LS7) o uimplies p V p
(LS8) If ¢ is satisfiable then ¢ A (¢ o u) is also satisfiable

This definition of commutative revision operators is very close to the one of
belief revision operators. But it suffers two drawbacks from a merging point of
view. First it allows to merge only two knowledge bases. And it forces the result
to be in the disjunction of the two given knowledge bases. We argue in [11,12]
that it has not to be always the case.

Definition 10. If A is an IC merging operator we define a commutative revision
operator on by pon p = Dyyu(@Up). We will say that o is the commutative
revision operator associated with /\.

Theorem 9. If A is an IC merging operator, then the operator o associated
with it satisfies (LS1-LS5),(LS7) and (LSS8).

By definitions oA operators are commutative, but the following property
shows that they can be consider as “double revision operators” (we recall that
popu=A,(p) is an AGM revision operator).

Theorem 10. If A is an IC merging operator then it satisfies

Achu(‘p U N) ~ As&(/"’) \ Au(ﬂo)

In order to obtain systematically a commutative revision operator from an
IC merging operator using definition 10, IC merging operators need to satisfy
an additional property:

Ay (p) if Auve () -0
DoV 8) =4 B, (6) i Ao () F M
Ay(p) VvV AL(0) otherwise

Theorem 11. If A is an IC merging operator, then the operator o defined as
popu==L,yu(pUp) satisfies (LS1-LS8) if and only if A\ satisfies property (1).



Remark 1. Property (1) implies A 4(p) = Aa(Ay(A))

This remark shows that property (1) is quite a topological one since A 4(p) =
poA = (Aoy)o A. That is to say that the result of the revision of ¢ by A depends
only of the models of p that are the closest to A. Revisions defined from a distance
satisfy this property.

A serious drawback of commutative revision definition is that it does not
allow to merge more than two knowledge bases since it is not associative (see
[13,14]), but the idea that the result of the merging has to implies the disjunction
of the knowledge bases can be very useful in a lot of applications. IC merging
operators allow to generalize Liberatore and Schaerf operators to n knowledge
bases, by defining the merging of a knowledge set {¢; U... Uy, } as:

Dypv.ve, (prU...Uwp,)

The logical properties of these operators are worth more study.

6 Conclusion

In this paper we have presented a logical framework for knowledge base merging
in the presence of integrity constraints when there is no preference over the
knowledge bases. We stated a set of properties an IC merging operator should
satisfy in order to have a rational behaviour. This set of properties can then be
used to classify particular merging methods.

We made a distinction between arbitration and majority operators, arbi-
tration operators striving to minimise individual dissatisfaction and majority
operators trying to minimise global dissatisfaction. An open question is to know
if arbitration and majority merging are two distinct merging subclasses or if
it is possible for a merging operator to be both an arbitration and a majority
merging operator.

We provide a model-theoretic characterisation for IC merging operators. This
characterisation is much more natural than the one in [11], due to the presence
of integrity constraints.

Actually, in a committee, all the protagonists do not have the same weight
on the final decision, so one generally needs to weight each knowledge base to
reflect this. The idea behind weights is that the higher weight a knowledge base
has, the more important it is. If the knowledge bases reflect the view of several
people, weights could represent, for example, the cardinality of each group. We
want to characterize logically the use of this weights. Majority operators are
close to this idea of weighted operators since they allow to take cardinalities into
account. But a more subtle treatment of weights in merging is still to do.

An on going work is the study of merging operators that adopt a coherence
approach to theory merging. These operators are based on an union of all the
knowledge bases and on the selection of some maximal subsets due to a given
order (not necessarily the inclusion), see e.g. [3,4]. An important drawback of
coherence merging operators is that the source of each knowledge is lost in the



merging process. So the problem is to take into account the source of each piece
of information in order to allow subtler behaviours for merging operators, for
example define majority or arbitration operators.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

C. E. Alchourrén, P. Gardenfors, and D. Makinson. On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic, 50:510—
530, 1985.

. K. J. Arrow. Social choice and individual values. Wiley, New York, second edition,

1963.

C. Baral, S. Kraus, J. Minker, and V. S. Subrahmanian. Combining knowledge
bases consisting of first-order theories. Computational Intelligence, 8(1):45-71,
1992.

S. Benferhat, D. Dubois, J. Lang, H. Prade, A. Saffioti, and P. Smets. A general
approach for inconsistency handling and merging information in prioritized knowl-
edge bases. In Proceedings of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning (KR’98), pages 466—477.

S. Benferhat, D. Dubois, and H. Prade. A computational model for belief change
and fusing ordered belief bases. In Frontiers in Belief revision. Kluwer, 1999. To
appear.

M. Dalal. Investigations into a theory of knowledge base revision: preliminary
report. In Proceedings of AAAI-88, pages 475-479, 1988.

P. Gérdenfors. Knowledge in fluz. MIT Press, 1988.

J. Halpern and Y. Moses. A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence, 54(3):319-379, 1992.

H. Katsuno and A. O. Mendelzon. Propositional knowledge base revision and
minimal change. Artificial Intelligence, 52:263-294, 1991.

J. S. Kelly. Arrow impossibility theorems. Series in economic theory and mathe-
matical economics. Academic Press, New York, 1978.

S. Konieczny and R. Pino Pérez. On the logic of merging. In Proceedings of
the Sizth International Conference on Principles of Knowledge Representation and
Reasoning (KR’98), pages 488—498, 1998.

S. Konieczny and R. Pino Pérez. Merging with integrity constraints. Technical
Report 99-01, LIFL, 1999. http://www.lifl.fr/GNOM/articles/it9901.ps.

P. Liberatore and M. Schaerf. Arbitration: A commutative operator for belief
revision. In Proceedings of the Second World Conference on the Fundamentals of
Artificial Intelligence, pages 217-228, 1995.

P. Liberatore and M. Schaerf. Arbitration (or how to merge knowledge bases).
IEEE Transactions on Knowledge and Data Engineering, 10(1):76-90, 1998.

J. Lin. Integration of weighted knowledge bases. Artificial Intelligence, 83(2):363—
378, 1996.

J. Lin and A. O. Mendelzon. Knowledge base merging by majority. Manuscript.
H. Moulin. Azioms of cooperative decision making. Monograph of the Econometric
Society. Cambridge University Press, 1988.

P. Z. Revesz. On the semantics of theory change: arbitration between old and
new information. In Proceedings of the 128" ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Databases, pages 71-92, 1993.

P. Z. Revesz. On the semantics of arbitration. International Journal of Algebra
and Computation, 7(2):133-160, 1997.



