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Abstract. Ordinal Conditional Functions (OCFs) are one of the predominant fra-
meworks to define belief change operators. In his original paper Spohn defines
OCFs as functions from the set of worlds to the set of ordinals. But in subsequent
paper by Spohn and others, OCFs are just used as functions from the set of worlds
to natural numbers (plus eventually +∞). The use of transfinite ordinals in this
framework has never been studied. This paper opens this way. We study gen-
eralisations of transmutations operators to transfinite ordinals. Using transfinite
ordinals allows to represent different “levels of beliefs”, that naturally appear in
real applications. This can be viewed as a generalisation of the usual “two levels
of beliefs” framework: knowledge versus beliefs; or rules base versus facts base,
issued from expert systems works.

1 Introduction

Ordinal Conditional Functions (OCFs) [14] are one of the predominant frameworks to
represent epistemic state and define belief change operators (see e.g.[14,16,3,10,13]).
The intuitive appeal of the definition explains its success: an OCF is a function that
maps worlds into ordinals. The smaller the ordinal, the more plausible the world for the
agent. This representation of epistemic state is more expressive than the one using total
pre-orders on worlds, that is one of the canonical ones for classical AGM belief revision
[12,3]. The fundamental role of OCF for defining belief revision operators is shown by
the fact that Spohn’s conditionalization of OCF [14] is often used to illustrate works on
iterated belief revision [3,10].

In his original paper Spohn defines OCFs as functions from the set of worlds to the
set of ordinals. But in subsequent papers by Spohn [15] and others, OCFs are just func-
tions from the set of worlds to natural numbers (and eventually +∞). This restriction is
natural, since it is enough to represent usual epistemic states and belief change operators.

But it is strange that in works using OCF it was never studied what the use of trans-
finite ordinals can bring to the representation of epistemic states, and its consequence
on the definition of belief revision operators.

This paper aims at studying transfinite OCFs, i.e. OCFs using transfinite ordinals.
Very roughly, transfinite ordinals allow to describe different “infinity levels”. From a
representational point of view, this allows to encode different “levels of beliefs”, i.e.
more or less strong beliefs, where the strong ones are considered as integrity constraints
by weaker ones.

This allows to define generalisation of usual frameworks. First, when one use OCFs
that are defined on the restriction 〈natural numbers ∪ {+∞}〉, the worlds that are
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mapped to +∞ represent unquestionable beliefs1, that are usually called knowledge
in this case.

It is a difficult philosophical debate to determine if knowledge exist or not. Which
agent can have unquestionable beliefs ? How can an agent be sure that what he “knows”
(believes) is absolutely true. It seems to us that no human/artificial agent can be sure
of that2. So speaking of knowledge for a human/artificial agent is just a convenient
simplifying convention for designing beliefs much more entrenched than other ones.
But, even in these really entrenched beliefs some can be even more entrenched than
other ones. So having only one +∞ level to represent deep entrenched beliefs is not
enough. One would need to be able to represent differences in the entrenchment of
these deep entrenched beliefs.

This distinction between knowledge and belief recalls the traditional view of agent
representation in expert systems and in automation, that divides the epistemic state
of the agent between a base of rules (that corresponds to knowledge) that is a set of
entrenched beliefs (rules) on how the represented system evolves, and a base of facts
(that corresponds to beliefs), that is a set of observations made by the agent (through
captors for instance).

To illustrate this view let us give an example about a doctor’s epistemic state. The
doctor has a base of rules, that represents his medical expertise/beliefs, and has a base
of facts, that represents the symptoms that he observes on a particular patient (this can
be medical analysis, visual observations, etc.).

For most applications this representation is clearly sufficient. And it allows also to
illustrate interesting discussions on the status of iterated belief revision.

In most papers iterated belief revision is presented as the process of incorporating
successively incoming new evidences. So the main point seems to be that the succes-
sive inputs are just more and more recent observations. It is true that an autonomous
agent has to be able to do this kind of change, but it is an error to use iterated belief
revision operators [3] to do that. Iterated belief revision operators [3] do not allow to in-
corporate more and more recent observations, but more and more reliable observations.
This subject is the starting point of the two interesting papers [9,4], where it is clearly
explained that if one wants to incorporate more and more recent information, one has
to use prioritised belief merging. Roughly, if the observations incorporation order de-
pends only of recency, and that they can have different reliability, then just store the
observations with their degree of reliability, and merge all those observations.

In [4] Dubois identifies three different kinds of revision. We will focus on the two
first ones. The first one is the one we just discuss above, that is incorporation of more
and more recent observations. This basically corresponds to cases where the base of
rule does not change, and where the base of facts increases. So suppose that the doctor
receives successively several different medical analysis (that have different reliability).
The incorporation of these facts will change the beliefs of the doctor on the disease of
the patient, but will not change his medical expertise. This case can be basically handled
by classical AGM belief revision [1,7,12] if all the observations are jointly consistent

1 Note that in this case OCFs can be viewed as a semantics for possibilistic logic [5].
2 Under the hypothesis of his existence, the only agent that could hold real knowledge is a God

agent.
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(that is the case if the world does not evolve (usual hypothesis in belief revision - oth-
erwise one has to use update operators [11,8]), and when the captors are reliable (for
instance with direct visual observations)). If the observations are not jointly consistent
(for instance if some captors/sources are not reliable), then one has to use the prioritised
belief merging framework proposed in [9] to this aim.

The second kind of revision identified by Dubois is when the set of rules of the
agent has to be changed. Suppose that our doctor goes to a scientific congress and learn
new protocols about a specific disease, then he has to change his base of rules. This is
the typical use of iterated belief revision à la Darwiche and Pearl [3]: a more reliable
piece of information has to be incorporated in our current theory. So typical examples
of DP iterated revision should be scientific theory change rather than every day life
observations examples with birds.

Some years ago a very interesting paper from Friedman and Halpern already dis-
cuss the problems and dangers of developing new technical change operators without
specifying their exact application cases (i.e. without giving them an “ontology”) [6].
We think that the papers of Dubois [4] and Delgrande-Dubois-Lang [9] is an interesting
reminder of this discussion for iterated belief change.

So to sum up Dubois’ view in [4], consider that the agent epistemic state is repre-
sented by two bases: a base of rules and a base of facts, the base of rules being more
important/reliable/entrenched than the base of facts. Then the two kinds of revision are
defined by the base that has to be revised. The first one revise the base of facts, the
second one the base of rules.

We think that one can go further than that. There is no objective reason to restrict
this process to only two bases, one can need to use more levels of beliefs. So we want
to define as many bases as needed, and each of this base can be revised differently.

Let us come back to our doctor example. We can not seriously restrict the beliefs of
this agent to a base of medical expertise, and a base of facts on the patient. This agent
can have other beliefs much more entrenched that his medical expertise, such as basic
arithmetics for instance. So we have at least three “level of beliefs”: basic arithmetics
that is much more entrenched than medical expertise, that is much more entrenched
than facts on the patient.

This is the kind of situation that Transfinite Ordinal Conditional Functions allow to
represent and handle.

In next section we we give a short refresher on ordinals, and in Section 3 recall
the basic definitions of OCF theory change. Then in Section 4 we define Transfinite
Ordinal Conditional Functions, that allow to encode different levels of beliefs in an
OCF. In Section 5 we show how to define a Transfinite OCF from a set of classical
OCFs that represent the different levels of beliefs. In Section 6 we discuss the revision
of Transfinite OCFs, and define relative transmutations, that allow to localize the change
to the concerned level of beliefs. Finally we conclude in Section 7.

2 Naive Ordinal Arithmetics

In set theory, the natural numbers can be build from sets:

0 = {} (the empty set)
1 = { {} } = {0}
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2 = { {}, { {} } } = {0, 1}
3 = {{}, { {} }, { {}, { {} } }} = {0, 1, 2}
4 = { {}, { {} }, { {}, { {} } }, {{}, { {} }, { {}, { {} } }} }= {0, 1, 2, 3}
etc.

So every natural number can be seen as a well ordered set, and the natural order on
natural number is given by inclusion of the corresponding sets (α < β iff α ∈ β).

A possible definition of ordinals is that a set S is an ordinal if and only if S is
strictly well-ordered with respect to set membership and every element of S is also
a subset of S.

So, starting from 0 ({}), and using a successor operation, noted α + 1 = α ∪ {α},
allows to build the ordinals.

The ordinals that correspond to natural numbers are finite ordinals. The existence of
transfinite ordinals is ensured by the axiom of infinity. The first transfinite ordinal is
denoted ω. It corresponds to the set of natural numbers {0, 1, 2, . . .}. But we can define
a successor to this ordinal ω. So we can define ω + 1, ω + 2, etc. until ω + ω = ω.2.

If we describe ω as the set {a0, a1, a2 . . .}, where a0 < a1 < a2 < . . ., then ω + 1
can be seen as the set {a0, a1, a2, . . . , b0}, where a0 < a1 < a2 < . . . < b0. See
figure 1 for a graphical representation of ω2.

w
w.2

0

Fig. 1. A graphical “matchstick” representation of the ordinal ω2. Each stick corresponds to an
ordinal of the form ω.m + n where m and n are natural numbers. (Figure from Wikipedia).

Then one can similarly define ω.3, ω.4, etc. And the ordinal that is the set of all these
ordinals is denoted ω2, etc. We will not use ordinals greater than ω2 in this work.

The ordinals ω, ω.2, ω.3, . . ., ω2, . . ., that have no predecessor, are called limit
ordinals. β is a limit ordinal if there is no ordinal α such that α + 1 = β.

Let us now define addition on ordinals.

Definition 1. The addition on ordinals α + β is defined inductively by:

– α + 0 = α,
– α + (β + 1) = (α + β) + 1 3,
– if β is limit then α + β is the limit of the α + γ for all γ < β.

3 Recall that ”+ 1” denotes the successor of an ordinal.
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This definition coincides with natural addition when working with finite ordinals. But
with transfinite ordinals the addition is not any more commutative. It is for instance easy
to see that 3 + ω = ω and is different from ω + 3 that is the successor of the successor
of the successor of ω.

3 Classical OCF Theory

We consider a propositional language L defined from a finite set of propositional vari-
ables P and the standard connectives.

A world (interpretation) I is a total function from P to {0, 1}. The set of all worlds
is noted W . An interpretation I is a model of a formula ϕ ∈ L if and only if it makes it
true in the usual truth functional way. mod(ϕ) denotes the set of models of the formula
ϕ, i.e., mod(ϕ) = {I ∈ W | I |= φ}. Let us denote O the class of ordinals.

Definition 2. An Ordinal Conditional Function (OCF) κ is a function from the set of
worlds W to the set of ordinals such that at least one world is assigned 0.

The meaning of an OCF is simple. The ordinal associated to a world denotes the world
plausibility. The higher the ordinal, the less plausible the world. So let us call this the
degree of disbelief of the world. In particular world that are assigned 0 are the most plau-
sible worlds, i.e. the currently believed worlds. This means that if one use OCFs as rep-
resentation of epistemic states for iterated belief revision, the belief base ϕ associated to
this epistemic state ϕ = Bel(κ) is defined by those models: mod(ϕ) = {I | κ(I) = 0}.
The set of OCFs will be denoted K.

The degree of disbelief can be straightforwardly extended to formulae (set of worlds).

Definition 3. The degree of disbelief of a formula ϕ is the minimum of the degree of
disbelief of its models: κ(ϕ) = minI|=ϕ κ(I).

And one can also define the degree of acceptance of a formula.

Definition 4. A formula ϕ is accepted (for an OCF κ) if κ(ϕ) = 0.
The degree of acceptance of an accepted formula ϕ is dκ(ϕ) = κ(¬ϕ).

Now we can define change operators in this setting as functions that change the degree
of acceptance of a formula:

Definition 5. A Transmutation [16] is a function that, given an OCF κ, a formula ϕ
and a degree of acceptance α, produces a new OCF κ ∗ (ϕ, α) such that ϕ is accepted
with degree dκ∗(ϕ,α)(ϕ) = α.

Several different transmutation operators can be defined. The problem is to meet the
condition of transmutation operators while keeping as much information as possible
from the old OCF. As for works on AGM belief revision there are several ways of
considering this minimality. The two most usual ones are conditionalization [14] and
adjustment [16].
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Definition 6. The (ϕ, α)-conditionalization of κ is a new OCF κ ∗C (ϕ, α) defined as

(κ ∗C (ϕ, α))(I) =
{
−κ(ϕ) + κ(I) if I |= ϕ
(−κ(¬ϕ) + κ(I)) + α if I |= ¬ϕ

where −β + α represents the ordinal γ such that β + γ = α.

Conditionalization moves all the models of ϕ. Adjustment moves only the most plausi-
ble models of ϕ (some models of ϕ are moved if necessary).

Definition 7. The (ϕ, α)-adjustment of κ is a new OCF κ ∗A (ϕ, α) defined as

(κ ∗A (ϕ, α))(I) =






0 if κ(I) = κ(ϕ)
α if I |= ¬ϕ and κ(I) < α
κ(I) otherwise

Adjustment can be seen as the counterpart of Boutilier’s natural revision [2] for OCFs.

4 Transfinite OCF

So the aim of this work is to encode different “levels of beliefs” in a same OCF. These
levels of beliefs have to be strictly hierarchized, in order to ensure that a belief in a
higher level is considered as an integrity constraint by the beliefs in lower levels. Let us
illustrate this need on a car-driving example.

Example 1. The most important beliefs of the agents are physical beliefs, that compose
the highest level of beliefs:

– The road is slippery if and only if it is snowed or frozen (sl ↔ sn ∨ f ).

Then the driving behaviour rules form the second level of beliefs:

– If the road is slippery, then adopt a moderate speed (sl → m).
– If there are roadworks, then adopt a moderate speed (w → m).

The first rule being more important/entrenched/believed than the second one (let us
assign a weight of 2 to the first rule, and a weight of 1 to the second one).

Finally the lowest level of beliefs is the one of facts that describe the agent’s beliefs
about the current situation:

– The road is snowed (sn).
– There are no roadworks (¬w). The road is not frozen (¬f ).

The belief that the road is snowed is more important/entrenched/believed than the fact
that the road is not frozen. Let us assign a weight of 5 to the first fact (the road is
snowed), and a weight of 2 to the other ones. The numbers reflect in a sense the intensity
of belief of these facts for the agent.

So we will use transfinite ordinals in order to encode the different levels of beliefs. The
idea is to use a limit ordinal as boundary between two levels of beliefs.
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Definition 8. A Transfinite OCF is an OCF κ such that for any world I either κ(I) = 0
or ω.(m − 1) < κ(I) < ω.m, and for at least one world I ′ κ(I ′) > ω.

When the last inequality hold m is called the level of belief of I , and is denoted
λκ(I). And if κ(I) = 0, then λκ(I) = 1.

The level of belief of a formula, noted λκ(ϕ), is the minimum level of beliefs of its
models: λκ(ϕ) = minI|=ϕ λκ(I).

So a Transfinite OCF that corresponds to the car-driving example of example 1 is for
instance:

Example 2. Let us introduce our representation of OCF. The ordinal at the left of the
line is the one associated to the worlds at the right. The propositional symbols are
considered in the order (f sn sl w m) for the interpretations. The notation ∗ represents
all the worlds where ∗ can be replaced by 0 or 1, for instance 1 ∗ 1 is a shortcut for
{101, 111}.

κ:
ω.2 + 1 {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗}
ω + 2 {10110, 01110, 01100, 10100, 11100, 11110}
ω + 1 {00010}
5 {00000, 00001, 00011, 10111, 10101}
2 {11101, 11111, 01111}
0 {01101}

This OCF represents the information given by the rules of Example 1. It is obtained
in the usual way [5]. So in this example the worlds that are associated to the ordinal 0
are the worlds that satisfy all the formulas of all the levels of beliefs. The worlds that are
associated to 2 or 5 are the worlds that satisfy the two most important levels of beliefs,
the worlds that are associated to 2 being more plausible than the ones that are associated
to 5. The worlds that are associated to ω + 1 and ω + 2 satisfy the most important level
of beliefs. The worlds that are associated to ω.2 + 1 do not satisfy the most important
level of beliefs.

5 Building a Transfinite OCF from a Set of Classical OCFs

It is possible to build a Transfinite OCF from a set of classical OCFs 4, each classical
OCF representing one level of beliefs.

Definition 9. Let κ1, . . . , κn being the classical OCFs that represent respectively the
first (least important), . . ., last (most important) level of beliefs. Then κ is the Transfinite
OCF defined inductively as κ(I) = κκ1,...,κn(I):

– κ∅(I) = 0

– κκ1,...,κn(I) =
{

ω.(n − 1) + κn(I) if κn(I) > 0
κκ1,...,κn−1(I) otherwise

4 Let us call Classical OCFs OCFs where all the ordinals associated to worlds are strictly smaller
than ω. And let us call Constrained OCFs OCFs where all the ordinals associated to worlds
are smaller or equal to ω.
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Coming back to the car-driving example, this amounts to consider the three following
classical OCFs representing the three levels of beliefs:

Example 3. The first level of belief, containing the facts, is encoded by κ1. The second
one, containing the driving behaviour rules, is encoded by κ2. The last one, containing
physical beliefs, is encoded by κ3.

κ1:
5 {101 ∗ ∗, 000 ∗ ∗, 001 ∗ ∗, 100 ∗ ∗}
2 {111 ∗ ∗, 01111, 01110, 01010, 01011, 110∗ ∗}
0 {01 ∗ 0∗}
κ2:
2 {∗ ∗ 1 ∗ 0}
1 {∗ ∗ 010}
0 {∗ ∗ 000, ∗ ∗ 001, ∗ ∗ 011, ∗ ∗ 101, ∗ ∗ 111}
κ3:
1 {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗}
0 {000 ∗ ∗, 101 ∗ ∗, 011 ∗ ∗, 111 ∗ ∗}

It is easy to check that starting from κ1, κ2, κ3 and using the construction of defini-
tion 9, we obtain κ of example 2.

6 Revising Transfinite OCFs

Of course, since Transfinite OCFs are a subclass of OCFs, then one can use usual con-
ditionalization (or adjustment, or any other transmutation) on Transfinite OCFs.

But this may cause some problems since conditionalization allows to change the
degree of acceptance of an interpretation (so of any formula), to any new degree.

This freedom may cause problems for Transfinite OCFs, since this means that this
allows to “merge” different levels of beliefs together, just as if there was only one
such level. So in this case this means that the representation using levels of beliefs
is useless. Since it would be possible for instance to define a classical OCF (using a
mapping from the Transfinite OCF) with exactly the same behaviour for transmuta-
tions/conditionalization (up to the mapping).

So we would rather need a conditionalization (or more generally a transmutation)
that allows only change inside each level of beliefs.

Let us see how to define this operation below. Let us call usual conditionalization
(resp. transmutation) absolute conditionalization (resp. absolute transmutation). We will
define now relative conditionalization (and relative transmutations).

First, let us illustrate what the Transfinite OCF means from each level of beliefs. This
is done using projections.

Definition 10. Let κ be a Transfinite OCF with n different levels of beliefs. The i-
projection of κ (projection of κ on the i-th level of belief), denoted κ↓i is defined as:

κ↓i(I) =






ω if ω.i < κ(I)
κ(I) if ω.(i − 1) < κ(I) < ω.i
0 if κ(I) < ω.(i − 1)

So let us see a projection of the Transfinite OCF of the example:
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Example 4. From the most important level of beliefs point of view, the projection is
just:

κ↓3:
1 {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗}
0 {000 ∗ ∗, 101 ∗ ∗, 011 ∗ ∗, 111 ∗ ∗}

The worlds that are associated to 0 in the third level of beliefs, will be eventually
discriminated by lower levels.

From the second level of beliefs point of view, the third level of beliefs appear as
integrity constraints that can not be questioned, so all the worlds that are not associated
to 0 in the (projection of the) third level of beliefs are just impossible worlds. So the
projection is:

κ↓2:
ω {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗}
2 {01100, 10100, 11100, 11110, 10110, 01110}
1 {00010}
0 {00000, 00001, 00011, 10111, 10101, 11101, 11111, 01111, 01101}

Now from the first level of beliefs, all the highest levels of beliefs appear as integrity
constraints. So the projection is:

κ↓1:
ω {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗, 00010, 10110, 01110, 01100, 10100, 111∗ 0}
5 {00000, 00001, 00011, 10111, 10101}
2 {11101, 11111, 01111}
0 {01101}

These projection give an idea of how to revise Transfinite OCFs. A relative transmu-
tation will only change the corresponding projection (i.e. level of beliefs). Since if the
level of a formula is i, this means that a change of its degree of disbelief will change
the information of the i-th level of beliefs.

Let us define relative transmutation formally.

Definition 11. Let κ be a Transfinite OCF with n levels of beliefs. Let α be an ordinal
α < ω. Given a (absolute) transmutation ∗. Then the corresponding relative transmu-
tation ! is defined as:

(κ ! (ϕ, α))(I) =






κ(I) if κo(I) = ω
κ(I) if κo(I) = 0 and λκ(I) < λκ(ϕ)
B(κ, λκ(ϕ) − 1) + 1 if κo(I) = 0 and λκ(I) = λκ(ϕ)
ω.λκ(ϕ) + κo(I) otherwise

where

– κo = κ↓λκ(ϕ) ∗ (ϕ, α)
– B(κ, i) = max{I|λκ(I)=i} κ(I), if i > 0; and B(κ, 0) = −1.
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The main idea of this definition is to localize the change to the concerned level of
beliefs. This is the aim of κo, that does the transmutation only on the projection on
the concerned level. Then the result is incorporated in the full Transfinite OCF κ, with
the four points of the main definition. The first point ensures that worlds in higher
levels of beliefs are not moved during the change. The second point says similarly that
worlds that are in lower levels of beliefs, and that are not involved in the change at the
concerned level of belief, are not moved during the change. The fourth point just encode
the changes on the concerned level of beliefs. The interesting part of the definition is
given by the third point that says that if there are new worlds that are possible (i.e.
such that κo(I) = 0) after the transmutation on the concerned level, then they are
downgraded to the lower level of beliefs. The problem is then to know where to put
them in the lower level. In order to ensure minimal change for this lower level we have
to try to modify as little as possible the structure of that level. This can be done by
including the downgraded worlds as the least plausible worlds of this level (this is the
aim of the function B that allows to find the plausibility of the least plausible worlds in
a given level of beliefs).

Let us see this on the example.

Example 5. Suppose that we just bought a new car with new driving assistance systems,
that make us remove from our driving behaviour rules that sl → m. So to make this
contraction we make a relative 0-conditionalization

κ !C (sl → m, 0):
ω.2 + 1 {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗}
ω + 1 {00010}
6 {10110, 01110, 01100, 10100, 11100, 11110}
5 {00000, 00001, 00011, 10111, 10101}
2 {11101, 11111, 01111}
0 {01101}

An interesting point to note is that after this relative conditionalization, the formula
sl → m still holds in the Transfinite OCF κ !C (sl → m, 0). But it is no longer a
formula of the second level of belief (i.e. [κ !C (sl → m, 0)]↓2). It is now a formula
of the first level of belief. So now a change in the first level of belief can remove this
rule from the beliefs of the agent, whereas it was not possible before since beliefs of the
second level of beliefs can not be changed by revision of the first level.

Note in particular that, to remove completely this formula from the beliefs of the
agent, one has to do one more contraction:

Example 6. (κ !C (sl → m, 0)) !C (sl → m, 0):

ω.2 + 1 {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗}
ω + 1 {00010}
5 {00000, 00001, 00011, 10111, 10101}
2 {11101, 11111, 01111}
0 {01101, 10110, 01110, 01100, 10100, 11100, 11110}

Note that on this example we have (κ !C (sl → m, 0))!C (sl → m, 0) = κ ∗C (sl →
m, 0). But this is generally not the case.
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As explained in the introduction, it makes sense to use different revision operators for
the different levels of beliefs. For instance the less important level, that usually contains
factual information can use more drastic revision operators, since loss of information in
this level is not that important (with respect to loss in higher levels).

So this means that we need some adaptative change operators. We define such oper-
ators as relative transmutations where the computation of κo depends of the level of the
new piece of information:

Definition 12. Let κ be a Transfinite OCF with n levels of beliefs. Let A = {∗1, . . . , ∗n}
be a vector of n absolute transmutations. Let α be an ordinal α < ω. Then the corre-
sponding adaptative relative transmutation !A is defined as:

(κ !A (ϕ, α))(I) =






κ(I) if κo(I) = ω
κ(I) if κo(I) = 0 and λκ(I) < λκ(ϕ)
B(κ, λκ(ϕ) − 1) + 1 if κo(I) = 0 and λκ(I) = λκ(ϕ)
ω.λκ(ϕ) + κo(I) otherwise

where

– κo = κ↓λκ(ϕ) ∗λκ(ϕ) (ϕ, α)
– B(κ, i) = max{I|λκ(I)=i} κ(I), if i > 0; and B(κ, 0) = −1.

7 Conclusion

In this paper we have investigated how to represent and change beliefs of an agent that
are hierarchized through several levels of beliefs, where each level appears as integrity
constraint for less important levels. We have shown how to represent these levels by
using Ordinal Conditional Functions. This is the first time, as far as we know, that the
use of transfinite ordinals is investigated. Spohn in a footnote of [14] says:

“It would be a natural idea to restrict the range of OCFs to the set of natural
numbers. In fact, much of the following could thereby be simplified since usual
arithmetic is simpler than the arithmetic on ordinals. For the sake of formal
generality I do not impose this restriction. But larger ranges may be intuitively
needed. For example, it is tempting to use OCFs with larger ranges to represent
the stubbornness with which some beliefs are held in the face of seemingly
arbitrarily augmentable counter-evidence.”

So in this work we have proposed a representation of these stubbornly held beliefs
by mean of levels of beliefs. And, more importantly, we have discussed the inadequacy
of usual (absolute) transmutations to realize the change on these OCFs. So we have
proposed the definition of relative transmutations, that limit the change to the concerned
level of belief.

We are convinced that several other interesting change operators can be defined in
the framework of Transfinite OCFs. We let this for future work.
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