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Abstract. Recently, Dunne et al. [9,10] introduced the concept of WAF (Weighted
Argumentation Framework). Such frameworks extend standard Dung’s ones for
abstract argumentation by associating weights with attacks. In the WAF setting,
weights are used for relaxing extensions, which proves useful when there are too
few extensions. In this paper, we exploit weights in a different perspective. We
show how to take advantage of attacks weights within an argumentation process for
selecting some extensions among Dung’s ones, which proves useful when there are
too many extensions, in order to improve the inferential power of the argumentation
framework.
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Introduction

Recently Dunne et al. [10] introduced the notion of weighted argumentation frameworks
(WAFs), which extend Dung’s argumentation frameworks by associating a weight (i.e., a
positive real number) with each attack. Among other things, Dunne et al. [10] provided
motivations for extending Dung’s setting with such weights, explained how weights can
be interpreted, and how they might be derived. They considered general algorithmic and
combinatorial properties of the WAF setting, and showed that it is more expressive than
four existing settings generalizing Dung’s one.
There can be several interpretations of these weights:

Explicit strength of the attacks Weights can reflect the evaluation of the strengths of
the attacks between arguments. In some applications, it proves sensible to split the
attack relation into a set of different types of attacks. For instance weak attacks,
medium ones, and strong ones, weak attacks being attacks that are not completely
reliable, and strong ones being attacks that cannot be ignored. Different attack
strengths can also be derived when attacks come from different sources, which
can be more or less reliable or significant. For instance, attacks coming from legal
laws must be considered as more important than attacks coming from some cul-
tural habits. We term this as “explicit strength” since it requires some additional
information which have to be given explicitly when the weighted argumentation
framework is built.



Implicit strength of the attacks Often arguments have more structure than abstract
ones in Dung’s setting. Thus, when arguments are built from some logic, the notion
of attack can be refined and different attack strengths can be defined by determin-
ing ”how much” an argument attacks another one. This can be done for instance
by evaluating how much the conclusion of an argument is inconsistent with the
premisses of another one, using an inconsistency measure [11,12,13]. See e.g. [3]
for discussions on the possible definitions of degree of undercuts. We call this case
“implicit strength” since it does not depend on any additional information, but just
on the structure of the arguments.

Votes on the attacks Perhaps the most natural interpretation of attack weights is when
weights indicate how many agents from a given group agree with the attack un-
der consideration. In this case a WAF can be considered as an aggregated view of
the (classical) argumentation frameworks of the group of agents. This is a natural
way to aggregate the points of view of a group of agents. Furthermore, under this
interpretation, it also makes sense to ignore some attacks a posteriori (i.e., those
which did not receive sufficient supports for being significant). This interpretation
has already been evoked in [6].

Dunne et al. [10] used WAF for expanding Dung’s extensions, which is particularly
useful when extensions are trivial ones (i.e., empty sets) since in this case inference triv-
ializes. The process goes through a relaxation of the usual notion of conflict-free sets of
arguments: some inconsistencies are tolerated in sets S of arguments, provided that the
sum of the weights of attacks between arguments of S does not exceed a given incon-
sistency budget 8. Admissibility is defined in the standard way, and standard semantics
are considered leading to various notions of 3-extensions which echo Dung’s ones (i.e.,
grounded, preferred, stable extensions are defined). See [7] for a generalization of this
definition with other aggregation functions than sum.

In this paper, we exploit weights in a different perspective. Whereas the original use
of WAF was when there are too few extensions, we use them now in the case where there
are too many extensions. We show how to take advantage of attacks weights within an
argumentation process for selecting some extensions among Dung’s ones, which proves
useful when there are too many extensions, or when extensions share too few arguments;
in the latter case more precise skeptical conclusions can be drawn. Since weights can also
be used to derive a refined notion of defence [7], they play with this respect a role similar
to those achieved by a preference relation over arguments [1]. Note that [7] introduces a
more general notion of refined defence than [5]. A comparison with other related works
as [16,17] can also be found in [7].

The rest of the paper is organized as follows. In the following section, classical def-
initions from Dung’s setting are first recalled. The second section indicates how weights
can be used to select some extensions (for a given semantics). Section 3 explore how to
define best defended extensions, using a balance between attacks on and attacks from
an extension. There are two ways to achieve this, either globally or locally. Whereas in
this setting the extensions are evaluated independently one another, Section 4 shows how
to evaluate extensions by comparing them in a pairwise fashion. We first define when
an extension is better than another one. Then it is possible to take advantage of meth-
ods coming from voting theory in order to define the best extensions. The last section
concludes the paper and gives some perspectives for further research.



1. Preliminaries

Let us start by presenting some basic definitions at work in Dung’s theory of abstract
argumentation [8]. A (finite) argumentation framework is a pair AF = (A, R) where A is
a (finite) set of so-called arguments and R is a binary relation over A (a subset of A x A),
the attack relation. An argument a is acceptable with respect to a set of arguments S
whenever it is defended by the set, i.e., for every b € A s.t. (b,a) € R, there exists ¢ € §
such that (c,b) € R. We say that a subset S of A is conflict-free if and only if for every
a,b € S, we have (a,b) ¢ R. A subset S of A is admissible for AF if and only if S is
conflict-free and acceptable with respect to S.

”Solutions” of an argumentation systems are sets of arguments that can be accepted
together given the attacks. This gives rise to the notion of extensions. Several definitions
are possible. For instance:

e S is a preferred extension of AF if and only if it is maximal (with respect to set
inclusion) among the set of admissible sets for AF .

e Sisa stable extension of AF if and only if S is conflict-free and Va € A\ S, Ib € S
such that (b,a) € R.

Now given a set &5(AF ) of extensions for a given semantics ©, one has to make
precise the arguments which can be inferred. This calls for an inference relation. In this
work we focus on skeptical inference (w.r.t. a semantics 0): AF }\JV"’S if S is included
into every o-extension, i.e., AF }VV"’S iff VE € &5(AF ), SCE.

Let us now turn to the Weighted Argumentation Frameworks:

Definition 1 (weighted argumentation framework) A Weighted Argumentation Fra-
mework (WAF) is a triple WAF = (A,R,w) where (A,R) is a Dung-style abstract argu-
mentation framework, and w : A x A — N is a function assigning a natural number' to
each attack (i.e. w(a,b) > 0 iff (a,b) € R), and a null value otherwise (w(a,b) = 0 iff
(a,b) € R).

In [10] the weight function is defined as a real value function. In most situations we
think that natural numbers are enough, and this simplifies some forthcoming definitions.
Another difference is that in [10] the weight function is defined only for attacks (i.e.,
w: R — R;). We extend its definition also to non-attacks, also for simplifying some
incoming definitions. [10] discuss the possibility to assign a O weight to an attack, but
conclude that “O-weight attacks is perhaps counter-intuitive”. We adhere to the view
consisting in considering 0 weight for an ordered pair of arguments (a,b) as meaning
“no attack” from a to b.

Let WAF = (A,R,w) be a weighted argumentation framework, we denote by WAF the
corresponding standard argumentation framework, obtained by forgetting the weights,
i.e., WAF = (A,R).

'We let N denote the natural numbers greater than or equal to 0, N, denote the natural numbers strictly
greater than 0, and R} denote the real numbers striclty greater than 0.



2. Selecting Extensions

In the general case, an argumentation framework may admit a large number of extensions
for some semantics (including the preferred one and the stable one). This leads to very
weak skeptical inferences. Selecting some extensions, the best ones for some criterion,
is thus a way to get more significant inferences.

Within the WAF setting, it is possible to take advantage of the available weights, in
order to select the extensions which best defend themselves. This selection process goes
through a comparison of the extension scores, expressing intuitively how strong they are.
The computation of such scores requires attacks weights to be somehow aggregated, and
this calls for an aggregation function:

Definition 2 (aggregation function) A symmetric aggregation function & is a mapping
from N" to N such that:?

o ifx <y, then ®(X1,.... %, ..., Xp) < D(X[,e00y Yy eeeyXnr) (monotony)
o B(0,x1,...,%) =B(x1,...,%,) (neutral element)
® D(xp,....x)=0iff x1=...=x,=0 (minimality)
e B(x)=x (identity)
® D(X1,.. %) = B(Xg(1)s- - - s Xn(n)), Jor any permutation 1T (symmetry)

Usual aggregation functions are ¥ and max. We focus on these functions fin the
following, but many other choices are possible (including leximax, leximin, X" (sum of
the n'"* powers), etc.).

One also needs to consider the attackers of an extension. Formally, given a WAF =
(A,R,w) and two subsets A, A, of A, we note by R(A1,A2) ={b€ Ay |Ja €Ay, (b,a) €
R}. R(A1,A,) contains all the arguments from A, that attack at least one argument from
A\ . Finally, the attack scores can be defined as follows:

Definition 3 (d-attack) Let WAF = (A,R,w) be a weighted argumentation framework.
Let Ay, Ay be two subsets of A. Let @ be an aggregation function. The B-attack from Ay
on Ay is : Se (A1 — A2) = Baca, bea,w(a,b).

Now, there are several ways to select extensions based on their scores. We explore
these ways in the following. Let us start with some basic definitions.

Definition 4 (¢-most attacking extensions) Ler WAF = (A, R, w) be a weighted argu-
mentation framework. Let & be the set of extensions of WAF = (A,R) for a given se-
mantics (preferred, stable, etc.). Let ® be an aggregation function. We define outs(E) =
S¢(E — R(E,A)). The ®-most attacking extensions of & are then given by: mag (&) =
argmaxge g (outs (E)). 3

@-most attacking extensions are those for which the aggregated weight of outgoing
attacks is maximal. Such extensions have some flavor of semi-stable extensions [4]. Note
however that there are no links between semi-stable extensions and X-most attacking ex-

2More formally, it is a family of such mappings, one for each positive integer n.
3Given a mapping g returning a real number, argmaxgcs(g(E)) (resp. argmingcs(g(E))) denotes the subset
of elements of & maximizing (resp. minimizing) the value of g.



tensions for grounded or preferred semantics, even when attack weights have a uniform,

positive value since maximality is considered with respect to cardinality for these two

semantics, while it is considered with respect to set-inclusion for semi-stable extensions.
Dually, one can also focus on é-least attacked extensions:

Definition 5 (®-least attacked extensions) Let WAF = (A,R,w) be a weighted argu-
mentation framework. Let & be the set of extensions of WAF = (A,R) for a given se-
mantics (preferred, stable, etc.). Let ® be an aggregation function. We define ing (E) =
Sq¢(R(E,A) — E). The ®-least attacked extensions of & are then given by: lag (&) =
argmingeg (ing (E)).

According to this definition, the best extensions are the ones receiving the least
(amount of) attacks.

3. Best Defended Extensions

The previous definitions take into account only the attacks from or towards the consid-
ered extension. Of course it is easy to combine the corresponding scores outq(E) and
ing (E) (for instance using difference or any lexicographic combination of them) in order
to define additional or still refined further notions of extensions.

Furthermore, the defence of an extension can be measured by considering the exten-
sion as a whole (global defence) or in an argument-wise fashion (local defence). We are
now ready to define the corresponding notions of globally &-best defended extensions
and locally é-best defended extensions.

Definition 6 (globally ®-best defended extensions) Let WAF = (A,R,w) be a weigh-
ted argumentation framework. Let & be the set of extensions of WAF = (A, R) for a given
semantics (preferred, stable, etc.). Let & be an aggregation function. For any extension
E of &, one defines the score def% (E) of global defence of E by : def$ (E) = outq(E) —
ing(E). The globally ®-best defended extensions of & are then given by: ghdg (&) =
argmaxpes(defS (E)).

It can be the case that there exists an argument of a globally -best defended exten-
sion E such that the aggregated weights of its attackers exceeds the aggregated weights of
its defenders. Accordingly, £ would not be considered as an acceptable set with respect
to the refined notion of defence introduced in [7]. Thus, a more demanding selection
criterion also makes sense, based on the local score of defence:

Definition 7 (locally ®-best defended extensions) Let WAF = (A, R, w) be a weighted
argumentation framework. Let & be the set of extensions of WAF = (A, R) for a given se-
mantics (preferred, stable, etc.). Let & be an aggregation function. For any extension E of
&, one defines the score defL (E) of local defence of E by defL(E) = minaepdefl (a,E),
where def! (a,E) = Minper({a}.A) Dece W(c,b) —w(b,a). The locally ©-best defended
extensions of & are then given by: lbde (&) = argmaxpes(defL (E)).

The local score of defence of an extension E is equal to the defence score of the
’least defended” argument of E.



4. Adversarial Extension Selection

All the definitions above select extensions by evaluating them independently from others,
and then by choosing the best ones.

A more sensible way to select extensions seems to be to compare them in pairwise
contests. It is then possible to take advantage of methods coming from voting theory in
order to select the best extensions with respect to these contests.

An extension E can be considered as better than another one E, when the attack of
E/ against Ej is stronger than the attack from E, against Ej:

Definition 8 (>¢) Let WAF = (A, R,w) be a weighted argumentation framework. Let E}
and E, be two extensions of WAF = (A, R) for a given semantics (preferred, stable, etc.).
Let @ be an aggregation function. Then E| >g E; iff S¢:(E1 — E») > Se(Ex — Ey).

There are at least four natural ways to exploit the ordering >g in order to select
extensions:

Definition 9 (bestiB) Let WAF = (A,R,w) be a weighted argumentation framework. Let
& be the set of extensions of WAF = (A, R) for a given semantics (preferred, stable, etc.).
Let & be an aggregation function. Then

o best](§)={E€ & |PE € &,E > E}.

e besty (&) = argmaxpeg|{E' € & | E > E'}|.

o besty (&) = argmaxpes|{E' € & |E >¢ E'}|—|{E' € & |E' > E}|.

o best) (&) = argmaxpesKSq (E), where KSe,(E) = mingrc g pr g (Se(E — E')).

The first rule is the most natural one, where the selected extensions are the ones
that are not beaten by any other extension. The problem with this method is that it can
provide an empty set as answer. This is not the case with the next ones (provided that
the input set of extensions is non-empty, of course). The second approach for selecting
extensions consists in counting how many other extensions an extension defeats. Indeed,
voting theory [2] provides us with interesting methods for deciding which are the best
extensions, such as the Copeland rule [18] or the Kramer-Simpson (also called maximin)
rule [19,14]. In fact the third rule is similar to the Copeland voting rule [18], which takes
as score of an extension E the difference between the number of extensions beaten by E
and the number of extensions which beats E. The fourth method is related, but instead of
just counting wins and losses, it counts in some sense how much an extension wins. This
can be related to the Kramer-Simpson voting rule [19,14].

5. An Example

We give in this section an example of WAF in order to illustrate the results obtained
with the different methods. It is not possible to discriminate all the methods on a single
example, but one can observe than four of the five preferred extensions can be selected
as best extensions, depending of the chosen method.

Consider WAF | = (Aj,Ry,w;) illustrated on the digraph of Figure 1 with A| =

{a7b’c7d7e7f7g}’ Rl = {(a7d)7(a7e)7(a7f)7(b7a)7(c’b)’(C7g)7(d7c)7(d7e)’(676)’(e7d)7



Figure 1. The digraph of WAF |

(fvg)7(g7f)} and wy : (avd) — 2 (aae) — 2 (a’f) — 2 (bva) — L (va) — L
(c,8) =2 (d;c) = 4; (de) = 3; (¢,¢) = 2; (e,d) = 5; (f,8) = 15 (&, f) = 4

WAF has five preferred extensions : & = {E|,E»,E3,E4,Es}, with E; = {a,c}, E; =
{b7d7f}7 Ey= {b,e,f}, Ey= {b7d7g}7 Es = {bveag}'

We focus on two aggregation functions only: ¥ and max.

e The most attacking and least attacked extensions are:

— The X-most attacking extensions are: may (&) = {Es,Es}.

— The max-most attacking extensions are: mamax (6’) = {E3,Es}.
— The X-least attacked extension is: lax (&) = {E }.

— The max-least attacked extension is: lamax (&) = {Es}.

e The globally and locally best defended extensions are:

— The globally X-best defended extensions coincide with the globally max-best
defended extensions: gbdy (&) = gbd (&) = {Es}.

— As to local defence, for any aggregation function @ the locally @-best de-
fended extension is lbdg (&) = {Es}.

e The adversarial methods gives:

— bestt (&) ={E;}. — best™ (&) = {Es}.
— besty(&) = {Es}. — besty™(&) = {Es}.
— besty(&) = {E;,Es}. — besty™ (&) = {Es}.
— besty(&) = {E}. — best™ (&) = {E4}.

6. Conclusion

In this paper we explored how to select extensions of Dung’s abstract argumentation
frameworks by exploiting weights on the attack relation. We provided a number of cri-
teria for such a selection purpose. We started with simple criteria, that do not make a
very fine-grained distinction between extensions, but are quite easy to compute. Then
we gave subtler criteria, requiring more complex computations. In particular the crite-
ria best§B and bestjD, directly inspired from existing voting rules, are the most promising
ones. Other criteria could be easily defined using other voting rules based on the majority
graph (see e.g. [15]), that is replaced in our framework by the relation >¢,. Each criterion



we considered is parameterized by an aggregation function which indicates how weights
interact. This gives the approach a good level of generality.

As a perspective for further research, we plan to identify the complexity of skeptical

inference from selected extensions, for all the criteria introduced in the paper. Another
perspective for further work is to compare the inferential powers of skeptical inference
for each of the criteria under consideration.
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