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Abstract

When aggregating information from a group of agents, accepting the pieces of information
shared by all agents is a natural requirement. In this paper, we investigate such a unanimity
condition in the setting of propositional merging. We discuss two interpretations of the
unanimity condition. We show that the first interpretation is captured by existing postulates
for merging. But the second interpretation is not, and this leads to the introduction of a
new disjunction postulate (Disj). It turns out that existing operators satisfying (Disj) do
not perform well with respect to the standard criteria used to evaluate merging operators:
logical properties, computational complexity and strategy-proofness. To fill this gap, we
introduce two new families of propositional merging operators, quota operators and GMIN
operators, which satisfy (Disj), and achieve interesting trade-offs with respect to the logical,
computational, and strategy-proofness criteria.

Key words: Belief Merging.

1 Introduction

Merging operators aim at defining the beliefs (resp. goals) of a group of agents
from their individual beliefs (resp. goals) and some integrity constraints. The merg-
ing problem in the propositional setting has been considered in many works, both
from the artificial intelligence community and the database community (see e.g.

1 This paper is an extended and revised version of a paper that appeared in the proceedings
of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05), pp. 424–
429, 2005.
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[10,26,20,21,3,4,18]). What makes the problem difficult is that agents often have
conflicting pieces of information.

Propositional merging is close to important issues considered in social choice the-
ory [1,23,2], especially vote and preference aggregation. Indeed, each agent can be
viewed as a voter and her belief/goal base can be considered as a compact repre-
sentation of a preference relation, which is such that the models of the base are the
most preferred alternatives and the countermodels are strictly less preferred than
the models. The output of the aggregation step (namely, the merged base) consists
of the most preferred alternatives for the group. The set of models of the integrity
constraint plays the role of an agenda (a set of available alternatives). In proposi-
tional merging, the (IC) postulates [18], complemented with the majority postulate
(Maj) are used as criteria to characterize several meaningful families of operators,
like the IC merging operators (those satisfying the (IC) postulates) and the IC ma-
jority operators (the IC operators satisfying (Maj)).

Now, there are several requirements that aggregation methods (including merging
techniques and voting rules) are expected to satisfy, and which have been identified
as conditions for voting rules and/or rationality postulates for merging. Among
them is unanimity, asking to accept at the group level the pieces of information
shared by all agents. When voting rules are concerned, it simply means that if
candidate a is preferred to candidate b by each voter, then candidate a has to be
preferred to candidate b for the group.

We can find at least two interpretations of unanimity in the merging framework.

The first one consists in viewing each base as the set of its models, representing the
most preferred alternatives of the associated agent. This interpretation of the una-
nimity principle amounts to keeping as models of the merged base each model of
the integrity constraint which satisfies all the bases. This property is ensured by ev-
ery merging operator satisfying postulate (IC2) (one of the (IC) postulates), which
is strictly more demanding ((IC2) requires that, when non empty, the set of mod-
els of the merged base consists precisely of the models of the integrity constraint
satisfying all the bases).

In the other possible interpretation, when each base is viewed as the set of its log-
ical consequences (i.e., the deductive closure of the base), the unanimity condition
states that the set of consequences shared by all agents, must hold for the group.
The formal characterization of this condition is what we call the disjunction pos-
tulate (Disj) for merging since it requires to select the models of the merged base
among the models of the agents’ bases (unless there is no model of the integrity
constraint among them).

(Disj) is expected in some belief merging scenarios, especially when it is assumed
that one of the agents is right (her beliefs hold in the actual world). For instance,
consider a group of physicians, each of them reporting a prescription for the same
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patient; it could be harmful for the patient to ”mix” the individual prescriptions in
order to obtain a prescription at the group level; requiring (Disj) prevents from such
trade-offs between prescriptions. On the other hand, (Disj) should be avoided when
a form of compromise between agents is desired. For instance, suppose that John
and Mary want to spend their evening together, but while John would like to go to
the sushi bar, then watch a movie, Mary would prefer to eat a risotto, then go to the
theater. Requiring (Disj) to be satisfied would make some compromises (like going
to the sushi bar then to the theater) out of reach.

In the following, we consider the family of disjunctive merging operators, i.e., those
satisfying (Disj). At the interpretation level, we show that (Disj) corresponds to an
interpretation of the unanimity condition for countermodels: if all agents agree that
some interpretations are countermodels, then the group must also agree on it. We
also show that (Disj) is independent of the (IC) postulates.

Now, existing merging operators satisfying (Disj) are typically formula-based merg-
ing operators, i.e., operators which select subsets of the union of the given bases.
Such operators do not perform well with respect to the standard criteria used to
evaluate merging operators, namely logical properties, computational complexity
and strategy-proofness. To fill this gap, we introduce two new families of proposi-
tional merging operators, quota operators and GMIN operators, which satisfy (Disj),
and achieve interesting trade-offs with respect to the logical, computational, and
strategy-proofness criteria.

Quota operators rely on a simple idea: any possible world is viewed as a model of
the merged base when it satisfies “sufficiently many” bases from the given profile
(the collection of agents’ bases). “Sufficiently many” means either “at least k” (any
integer, absolute quota), or “at least k%” (a relative quota), or finally “as many as

possible”, and each interpretation gives rise to a specific merging operator. The full
family of quota operators is obtained by letting the quota vary. We show that quota
operators exhibit good logical properties, have low computational complexity and
are strategy-proof.

Each GMIN operator is parameterized by a pseudo-distance, and the family is ob-
tained by letting it vary. Each GMIN operator refines all quota operators, has good
logical properties, is mildly complex (i.e., the inference problem is at the first level
of the polynomial hierarchy) but is not strategy-proof in the general case.

The rest of the paper is as follows. The next section gives some formal prelimi-
naries. Section 3 discusses the main criteria for evaluating merging operators, and
presents some expected logical properties for a merging operator. In Section 4,
we formalize the unanimity condition in the propositional merging setting. In Sec-
tion 5, quota operators are defined and their properties are presented. In Section 6,
we define 4k

max , which is the operator obtained when optimizing the value of the
quota. In Section 7, GMIN operators are defined and their properties are presented.
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Finally, we conclude this paper in Section 8. Proofs are reported in appendix.

2 Formal Preliminaries

We consider a propositional language L defined from a finite set of propositional
variables P and the usual connectives, including > (the Boolean constant true) and
? (the Boolean constant false).

An interpretation (or world) is a total function from P to {0, 1}, denoted by a bit
vector whenever a strict total order on P is specified. The set of all interpretations
is noted W . An interpretation ! is a model of a formula � 2 L if and only if it
makes it true in the usual truth functional way. |= denotes logical entailment and
⌘ denotes logical equivalence. [�] denotes the set of models of formula �, i.e.,
[�] = {! 2 W | ! |= �}. Conversely, let M be a set of interpretations, 'M denotes
the logical formula (unique up to logical equivalence) whose models are M .

A base K denotes the set of beliefs/goals of an agent, it is a finite and consistent set
of propositional formulas, interpreted conjunctively. Unless stated otherwise, we
identify K with the conjunction of its elements.

A profile E represents a group of n agents involved in the merging process. It
is a non-empty multi-set of bases E = {K

1

, . . . , Kn}, hence different agents are
allowed to exhibit identical bases. We denote by

V
E the conjunction of bases of E,

i.e.,
V
E = K

1

^ . . . ^Kn, and similarly
W
E is the disjunction of the bases of E,

i.e.,
W
E = K

1

_ . . ._Kn. A profile E is said to be consistent if and only if
V
E is

consistent. Multi-set union is noted t, and multi-set containment relation is noted
v. The cardinality of a finite set (or a finite multi-set) A is noted #(A). We say that
two profiles are equivalent, noted E

1

⌘ E

2

, if there exists a bijection f from E

1

to
E

2

such that for every K 2 E

1

, K and f(K) are logically equivalent.

A merging operator � associates any profile E and some integrity constraints µ to
a merged base �µ(E). The integrity constraints µ consist of a consistent formula
the merged base has to satisfy (it may represent some physical laws, some norms,
etc.).

A preorder  on W is a reflexive and transitive relation. A preorder on W is total
if 8!,!0 2 W , !  !

0 or !

0  !. Let  be a preorder on W , we define the
corresponding strict ordering < on W as ! < !

0 if and only if !  !

0 and !

0 6 !,
and the induced equivalence relation (indifference) ' on W is given by ! ' !

0 if
and only if !  !

0 and !

0  !. We write ! 2 min(A,) if and only if ! 2 A and
there does not exist !0 2 A s.t. !0

< !.

We assume the reader familiar with the complexity classes P, NP and coNP and we

4



consider the following classes located at the first level of the polynomial hierarchy
(see [25] for an introduction to complexity theory):

• BH(2) (also known as DP) is the class of all languages L such that L = L

1

\L

2

,
where L

1

is in NP and L

2

in coNP. BH(3) is the class of all languages L such
that L = L

1

[ L

2

, where L

1

is in BH(2) and L

2

in NP. coBH(3) is the class of
all languages L such that L 2 BH(3).

• �

p
2

= PNP is the class of all languages that can be recognized in polynomial
time by a deterministic Turing machine equipped with an NP oracle, where an
NP oracle solves whatever instance of a problem from NP in unit time.

• ⇥

p
2

= �

p
2

[O(log n)] is the class of all languages that can be recognized in poly-
nomial time by a deterministic Turing machine using a number of calls to an NP
oracle bounded by a logarithmic function of the size of the input.

3 Expected Properties of Merging Operators

Many merging operators have been defined so far. A distinction between model-
based operators [26,18,16], which select some interpretations that are the “closest”

to the bases encoding the beliefs/goals of agents, and formula-based ones [3,4,15],
which pick some formulas in the union of the bases is often made [16].

3.1 How to Choose a “Good” Merging Operator?

Each existing merging operator is more or less suited to the various merging scenar-
ios which can be considered. Subsequently, when facing an application for which
merging is required, a first difficulty is the choice of a specific merging operator.
Among the criteria which can be used to make a valuable choice, are the following
ones:

Rationality: A main requirement for adhering to a merging method is that it of-
fers the expected properties of what intuitively “merging” means. This calls for
sets of rationality postulates and this issue has been addressed in several papers
[26,20,18]. In the following, we focus on the rationality postulates given in [18],
because they extend other proposals.

Computational complexity: When one looks for a merging operator for an au-
tonomous multi-agent system, a natural requirement is computational efficiency.
In the worst case, merging is not a computationally easy task [16], and query
answering typically lies at the first or even the second level of the polynomial
hierarchy. Computationally easier operators can be obviously preferred to more
complex ones. Identifying the computational complexity of the query answering
problem for an operator, and restrictions under which it decreases, are important
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issues to be investigated.
Strategy-proofness: It is usually expected for merging that agents report truthfully

their beliefs/goals. For many applications, this assumption can easily be made,
in particular when the agents have limited reasoning abilities. However, when
rational agents with full inference power are considered, such an assumption
must be questioned: agents can be tempted to misreport their beliefs/goals in
order to achieve a better merging result from their point of view. Strategy-proof
operators must be preferred in such a case.

How much existing merging operators fit the criteria above has been investigated in
a number of previous papers. As to rationality, one can look at [26,20,21,15,18,16].
As to computational complexity, see [16,24], and for a study of strategy-proofness
of many merging operators see [13] (see also [22] for a related study concerning
merging operators for ordinal conditional functions).

The main result of [13] is that strategy-proofness is hard to achieve for merging
operators. This result is not so surprising since, in social choice theory, an im-
possibility theorem (the Gibbard-Sattertwhaite theorem), states that this strategy-
proofness task is not achievable, in the general case, when one aggregates prefer-
ences [14,27,23]. In [13], it is shown that even under very restrictive assumptions,
most of the propositional merging operators from the literature are not strategy-
proof.

In the light of these results, it appears that while no merging operator is better
than any other operator with respect to all the above criteria, model-based oper-
ators [26,18,16] are typically better than formula-based operators [3,4,15]. To be
more precise, while operators from both families are typically not strategy-proof,
model-based operators are often computationally easier (inference is typically ⇥

p
2

-
complete or �

p
2

-complete) than formula-based ones (inference can be ⇧

p
2

-hard)
[16]. In addition, model-based operators also typically satisfy more rationality pos-
tulates than formula-based ones (see [18,15]).

It turns out that the main argument for making use of formula-based operators in-
stead of model-based operators is their disjunctive behavior. 2 A main contribution
of this paper is to show that disjunctive merging operators which are much better
performers than formula-based ones with respect to the three criteria exist. Espe-
cially, we point out two new families of such disjunctive merging operators.

3.2 Logical Properties

The following set of logical properties for merging operators has been presented
and discussed in [17,18]:

2 See Section 4 for a discussion on disjunction.
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Definition 1 (IC merging operators) Let 4 be a propositional merging operator,
E, E

1

, E
2

be profiles, K
1

, K
2

be bases and µ, µ
1

, µ
2

be integrity constraints. Let
n be an integer. 4 is an IC merging operator if and only if it satisfies the following
postulates:

(IC0) 4µ(E) |= µ

(IC1) If µ is consistent, then 4µ(E) is consistent
(IC2) If

V
E is consistent with µ, then 4µ(E) ⌘ V

E ^ µ

(IC3) If E
1

⌘ E

2

and µ

1

⌘ µ

2

, then 4µ
1

(E

1

) ⌘ 4µ
2

(E

2

)

(IC4) If K
1

|= µ and K

2

|= µ, then 4µ({K1

, K

2

}) ^K

1

is consistent if and only
if 4µ({K1

, K

2

}) ^K

2

is consistent
(IC5) 4µ(E1

) ^4µ(E2

) |= 4µ(E1

t E

2

)

(IC6) If 4µ(E1

)^4µ(E2

) is consistent, then 4µ(E1

tE

2

) |= 4µ(E1

)^4µ(E2

)

(IC7) 4µ
1

(E) ^ µ

2

|= 4µ
1

^µ
2

(E)

(IC8) If 4µ
1

(E) ^ µ

2

is consistent, then 4µ
1

^µ
2

(E) |= 4µ
1

(E) ^ µ

2

An IC merging operator is said to be an IC majority operator if it satisfies (Maj)

(Maj) 9n 4µ (E1

t E

2

t . . . t E

2| {z }
n

) |= 4µ(E2

)

The intuitive meaning of the properties is the following: (IC0) ensures that the
merged base satisfies the integrity constraints. (IC1) states that, if the integrity con-
straints are consistent, then the merged base has to be consistent. (IC2) states that if
possible, the merged base is simply the conjunction of the bases with the integrity
constraints. (IC3) is the principle of irrelevance of syntax: the result of merging
has to depend only on the expressed opinions and not on their syntactical presen-
tation. (IC4) is a fairness postulate meaning that when one merges two bases, one
should not give preference to one of them (if the merged base is consistent with
one of them, it has to be consistent with the other one.) It is a symmetry condition,
which aims to rule out operators which give priority to one of the bases. (IC5) ex-
presses the following idea: if profiles are viewed as expressing the beliefs/goals of
the agents of a group, then if E

1

(corresponding to a first group) compromises on
a set of alternatives which A belongs to, and E

2

(corresponding to a second group)
compromises on another set of alternatives which contains A too, then A has to
be in the chosen alternatives if we join the two groups. (IC5) and (IC6) together
state that if one could find two subgroups of agents which agree on at least one
alternative, then the merged base must be exactly those alternatives the two groups
agree on. (IC7) and (IC8) state that the notion of closeness is well-behaved, i.e., an
alternative that is preferred among the possible alternatives ([µ

1

]), will remain pre-
ferred if one restricts the possible choices ([µ

1

^µ

2

]). The majority postulate (Maj)
just means that repeating sufficiently many times a subgroup of agents allows it to
impose its view to the whole group.

See [17,19] for more explanations about these postulates and the behaviour of the
corresponding operators.
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4 Unanimity and Disjunction

As explained in the introduction, the unanimity condition for voting rules requires
that if a candidate is chosen by every voter from a group then the group should also
choose her. In the merging setting, at the interpretation level, available alternatives
are the models of the integrity constraint; accordingly, such a Unanimity condition
on Models can be formalized by

(UnaM) If ! |= µ and 8K 2 E, ! |= K, then ! |= 4µ(E)

It is easy to show that every merging operator satisfying (IC2) also satisfies (UnaM).

Now, each propositional base can also be viewed as the (conjunctive) set of its log-
ical consequences. This view gives rise to another interpretation of the Unanimity
condition, at the Formula level this time.

(UnaF) If 9K 2 E s.t. µ ^ K is consistent, then if 8K 2 E, K |= ↵, then
4µ(E) |= ↵

Roughly, this condition states that every formula which is a logical consequence
of each base of the given profile E should also be a logical consequence of the
merged base. Nevertheless, since one wants to preserve the basic postulates (IC0)
and (IC1), 3 we require this condition only when there exists at least one base K

of E that is consistent with µ. (UnaF) turns out to be equivalent to the following
(and simpler) (Disj) postulate:

(Disj) If
W
E is consistent with µ, then 4µ(E) |= W

E

This property clearly states that each model of the merged base must be chosen
among the models of the disjunction of the bases, whenever this disjunction is
consistent with the constraints.

Proposition 1 (UnaF) and (Disj) are equivalent.

Let us call disjunctive operators the operators satisfying the condition (Disj).

Interestingly, at the interpretation level, this property is also equivalent to the fol-
lowing (UnaC) postulate (Unanimity for Countermodels):

(UnaC) If
W
E is consistent with µ, then if 8K 2 E, ! 6|= K, then ! 6|= 4µ(E)

The rationale for (UnaC) is to discard from the models of the merged base all the

3 From an aggregation point of view, (IC0) means that the chosen alternatives for the group
are in the set of available alternatives and (IC1) means that there exist chosen alternatives
for the group as soon as the set of available alternatives is not empty.
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interpretations which are discarded by each agent of the group, which is a natural
requirement.

Proposition 2 (UnaC) and (Disj) are equivalent.

The statements of (UnaM) and (UnaC) have quite a similar structure, but (UnaM)
expresses a unanimity on models whereas (UnaC) is concerned with unanimity on
countermodels.

Let us now extend the representation theorem for IC merging operators given in
[19] to the case of disjunctive merging operators. Let us first recall the definition of
syncretic assignments from [19]:

Definition 2 (syncretic assignments) A syncretic assignment is a total function '

mapping each profile E to a relation E over interpretations, such that for any
!,!

0 2 W:

(1) If ! |= V
E and !

0 |= V
E, then ! 'E !

0

(2) If ! |= V
E and !

0 6|= V
E, then ! <E !

0

(3) If E
1

⌘ E

2

, then E
1

=E
2

(4) 8! 2 W , if ! |= K, then 9!0 |= K

0 s.t. !0 {K,K0} !

(5) If ! E
1

!

0 and ! E
2

!

0, then ! E
1

tE
2

!

0

(6) If ! <E
1

!

0 and ! E
2

!

0, then ! <E
1

tE
2

!

0

Let us now introduce a condition which characterizes the disjunctive behavior:

Definition 3 (disjunctive syncretic assignments) A disjunctive syncretic assign-
ment is a syncretic assignment satisfying the following condition:

(d) If ! |= W
E and !

0 6|= W
E, then ! <E !

0

We derived a representation theorem for disjunctive merging operators:

Proposition 3 4 is a disjunctive IC merging operator (i.e., it satisfies (IC0-IC8)
and (Disj)) if and only if there exists a disjunctive syncretic assignment which maps
each profile E to a total preorder E such that [4µ(E)] = min([µ],E).

It turns out that the disjunction property (Disj) is not satisfied by many IC merging
operators [18], since most of them allow for “generating” some new beliefs/goals
from the ones in the bases of the profile (some interpretations which do not satisfy
any of the bases can be chosen as models of the merged base). This is justified by
the fact that merging operators are sometimes expected to find trade-offs between
the agent’s views. When this behaviour is unexpected, formula-based merging op-
erators – which satisfy (Disj) – can be used, but such operators:

• do not satisfy many rationality postulates [15] (especially (IC3) is not satisfied),
• are often hard from a computational point of view [16],
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• and are not strategy-proof [13].

Now, at a first glance, a straightforward idea to define disjunctive operators is to
enforce the disjunction condition in the integrity constraints of (non-disjunctive)
operators. To be more precise:

Definition 4 (4d) Let 4 be any propositional merging operator. The “disjunctive”
merging operator 4d induced by 4 is defined by: 8E, µ,4d

µ(E) ⌘ 4
(

W
E)^µ(E).

However, there is no guarantee that the resulting operator is valuable from a logical
point of view. Indeed, even if one starts with an IC merging operator 4 (i.e., an
operator satisfying all the (IC) postulates), one cannot ensure in the general case
that 4d is also an IC operator:

Proposition 4 Let 4 be an IC merging operator. Then 4d satisfies (IC0), (IC2),
(IC3), (IC4), (IC7), (IC8) and (Disj). None of (IC1), (IC5), (IC6) is satisfied in
the general case.

So an important issue is to determine the impact of the new disjunction postulate
on the existing families of operators. The key question concerns the independence
of the postulate w.r.t. existing ones. The results presented in the following show
that (Disj) is independent of the IC postulates in the sense that some IC operators
(like 4dD,⌃ [19]) satisfies it, while other IC operators (like 4dH ,⌃ [19]) do not.
Since 4dD,⌃ and 4dH ,⌃ also satisfy the majority postulate, (Disj) enables to split
the family of IC majority operators into two non-empty subsets.

While (Disj) is compatible with the (IC) postulates, only few existing operators
satisfy both conditions, especially because only few operators satisfy (Disj); in-
deed, the standard model-based merging operators based on the Hamming distance
between interpretations [19] satisfy all the (IC) postulates but do not satisfy (Disj).
Contrastingly, as explained previously, formula-based merging operators from the
literature are typically disjunctive ones, but they do not satisfy all the (IC) postu-
lates, they have a high complexity and they are not strategy-proof.

This calls for new disjunctive merging operators satisfying as many (IC) postulates
as possible, and more generally, performing better than formula-based operators
with respect to the complexity and strategy-proofness criteria. In the following we
fill this gap by providing two families of new disjunctive merging operators which
offer interesting alternatives to formula-based operators in this respect.

5 Quota Operators

A first family consists of quota operators. Quota operators rely on a simple idea:
any possible world is viewed as a model of the merged base when it satisfies “suf-
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ficiently many” bases from the given profile.

Definition 5 (quota operators) Let k be an integer � 0, E = {K
1

, . . . , Kn} be a
profile, and µ be an integrity constraint. The k-quota merging operator, noted 4k,
is defined in a model-theoretic way as:

[4k
µ(E)] =

8
><

>:

{! 2 [µ] | 8Ki 2 E ! |= Ki} if non empty,

{! 2 [µ] | #({Ki 2 E | ! |= Ki}) � k} otherwise.

Essentially, this definition states that the models of the result of the k-quota merging
of profile E under constraints µ are the models of µ which satisfy at least k bases of
E. When there is no conflict for the merging, i.e.,

V
E ^ µ is consistent, the result

of the merging is simply the conjunction of the bases with the integrity constraint.

Example 1 Consider a set P consisting of three atoms and a profile E = {K
1

, K

2

,

K

3

, K

4

} with [K

1

] = {100, 001, 010, 101}, [K
2

] = {001, 101}, [K
3

] = {100, 000,
011}, and [K

4

] = {111}, and the integrity constraints [µ] = W \ {010, 011}.

Using quota operators, we get:

• [41

µ(E)] = {000, 001, 100, 101, 111}: the models of the merged base are the
models of µ which satisfy at least one base.

• [42

µ(E)] = {001, 100, 101}: the models of the merged base are the models of µ
which satisfy at least two bases.

• [43

µ(E)] = ;: no model of µ satisfies at least three bases.

Fixing the quota to 0 or 1 leads to operators close to operators known in the lit-
erature. Thus, 40 gives the conjunction of the bases with the constraints µ when
consistent and µ otherwise. It is called full meet merging operator in [17]. This op-
erator leads to giving up all the agents’ beliefs as soon as they are conflicting. 41

gives the conjunction of the bases with µ when consistent and the conjunction of µ
with the disjunction of the bases otherwise; it is close to the basic merging operator

[17], and is also definable as a model-based merging operator obtained using the
drastic distance and Max as aggregation function [16]. The only difference is that
41 gives an inconsistent result when the disjunction of the bases is not consistent
with µ, whilst the basic merging operator gives µ in this case.

Here is an equivalent syntactical characterization of each quota operator 4k
µ(E)

(i.e., the result is directly given by a formula) that is obtained from subsets of E. 4
Let us first define the following notation:

4

“Subsets” is to be considered here with respect to multi-set containment; “Sub multi-

sets” would be more correct but it sounds too bad.
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pnkq = {C ✓ {1, . . . , n} | #(C) = k}.

Then the following proposition gives a characterization of quota operators:

Proposition 5 Let k be an integer � 0, E = {K
1

, . . . , Kn} be a profile, and µ be
an integrity constraint.

4k
µ(E) ⌘

8
>><

>>:

V
E ^ µ if consistent,

(

_

C2pnkq
(

^

j2C
Kj)) ^ µ otherwise.

Interestingly, the size of the formula equivalent to [4k
µ(E)] given by Proposition 5

is polynomial in |E| + |µ|. Hence, merged bases can be easily compiled as propo-
sitional formulas, i.e., turned into an equivalent propositional formula in polyno-
mial space (and even in polynomial time in this case). This property is not shared
by many merging operators. Indeed, there are strong connections between belief
merging operators (under integrity constraints) and belief revision operators, and it
has been shown in [9] some (non-)compilability results for several belief revision
operators.

5.1 Logical Properties

Quota merging operators exhibit good logical properties :

Proposition 6 4k operators satisfy (IC0), (IC2), (IC3), (IC4), (IC5), (IC7), (IC8),
and (Disj) if k > 0. They do not satisfy (IC1), (IC6) and (Maj) in the general case.

Only two properties of IC merging operators are not satisfied: (IC1) since the result
of the quota merging can be inconsistent (see Example 1), and (IC6).

Note that it is possible to make (IC1) satisfied by requiring that, when no interpreta-
tion reaches the quota (i.e., satisfies at least k bases), the merged base is equivalent
to the integrity constraints. However, this alternative definition leads to operators
which satisfy neither (Disj) nor the important postulate (IC5), so we did not con-
sider this option (we do not want to expand further on it here, for the sake of brevity;
see nevertheless Proposition 22 in the appendix).

The other postulate which is not satisfied by quota operators, (IC6), is one of the
postulates that no formula-based operators satisfy [15]. From this point of view,
quota operators have a similar behaviour to that of formula-based operators.
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Two other interesting properties can be defined for characterizing more precisely
quota operators; the first one is a weakening of (Maj):

(Wmaj) If 4µ(E2

) is consistent,
then 9n 4µ (E1

t E

2

t . . . t E

2| {z }
n

) ^4µ(E2

) is consistent

That (Wmaj) is satisfied by quota operators can be easily explained by the fact that
duplicating some bases from a given profile can only weaken the resulting merged
base when quota operators are considered.

The second property shows the prominence of the largest maximal consistent sub-
sets of the profile with respect to the merged base. We first need to define maximal
consistent subsets:

Definition 6 (maximal consistent subsets)

MAXCONSµ(E) = {M | M v E,

^
M ^ µ is consistent,

and if M @ M

0 v E, then
^

M

0 ^ µ is not consistent}

We are now ready to define the cardinality property (Card):

(Card) If M
1

,M

2

2 MAXCONSµ(E), #(M

1

)  #(M

2

), and 4µ(E) ^M

1

is con-
sistent, then 4µ(E) ^M

2

is consistent

This property can be seen as a kind of majority property. The maximal consistent
subsets of bases are the largest (with respect to multi-set inclusion) conflict-free
sets of formulas from the bases, and, as such, they play a fundamental role in many
approaches to reasoning under inconsistency (see e.g. [8,7,6]). (Card) states that
the largest sets (with respect to cardinality) among these sets have to be considered
so that if the merged base is consistent with a maximal consistent subset M

1

, it has
to be consistent with every maximal consistent subset M

2

which is larger than M

1

.

Unlike (Wmaj), the cardinality postulate (Card) is not a weakening of (Maj), even
under the (IC) conditions, but it is independent of it. Thus, in the following, we
show that the 4kmax operator (cf. Section 6) is an IC majority merging operator
satisfying (Card), and that GMIN operators (cf. Section 7) are IC operators which
do not satisfy any of (Wmaj) or (Card) in the general case. On the other hand, the
IC majority merging operator 4dH ,⌃ [19] does not satisfy (Card). Indeed, consider
the following counter-example: P = {a, b}, E = {K

1

, K

2

, K

3

} with K

1

= {¬a},
K

2

= {a ^ ¬b} and K

3

= {(¬a ^ b) _ (a ^ ¬b)}. MAXCONS>(E) contains two
elements: M

1

= {¬a, (¬a^b)_ (a^¬b)} and M

2

= {a^¬b, (¬a^b)_ (a^¬b)}.
Clearly, #(M

1

) = #(M

2

). 4dH ,⌃
> (E) ⌘ a ^ ¬b is consistent with M

2

but not with
M

1

.
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Proposition 7 4k operators satisfy (Card) and (Wmaj).

5.2 Computational Complexity

Let 4 be a propositional merging operator, we consider the following decision
problem MERGE(4):

• Input : a triple hE, µ,↵i where E = {K
1

, . . . , Kn} is a profile, µ 2 L is an
integrity constraint, and ↵ 2 L is a formula.

• Question : Does 4µ(E) |= ↵ hold?

For quota merging operators, we can prove that:

Proposition 8 MERGE(4k) is coBH(3)-complete.

This coBH(3)-completeness result is obtained even in the restricted case when the
query ↵ is a propositional atom and there is no integrity constraints (µ ⌘ >).
Note that this complexity class is located at a low level of the Boolean hierarchy.
Furthermore, the complexity of MERGE(4k) decreases to coNP in the degenerate
cases whenever k is not lower than the number of bases of E or under the restriction
when

V
E ^ µ is known at start as inconsistent.

5.3 Strategy-Proofness

Let us now investigate how robust quota operators are with respect to manipula-
tion. Intuitively, a merging operator is strategy-proof if and only if, given the be-
liefs/goals of the other agents, reporting untruthful beliefs/goals does not enable
an agent to improve her satisfaction. A formal definition suited to this intuition is
given in [13]:

Definition 7 (strategy-proofness) Let i be a satisfaction index, i.e., a total func-
tion from L ⇥ L to IR. A merging operator � is strategy-proof for i if and only if
there is no integrity constraint µ, no profile E = {K

1

, . . . , Kn}, no base K and no
base K

0 such that i(K,�µ(E t {K 0})) > i(K,�µ(E t {K})).

Clearly, there are numerous ways to define the satisfaction of an agent given a
merged base. While many ad hoc definitions can be considered, the following three
indexes from [13] are meaningful when no additional information is available:

Definition 8 (indexes) Let K, K
�

be two bases:

14



• idw(K,K

�

) =

8
><

>:

1 if K ^K

�

is consistent,

0 otherwise.

• ids(K,K

�

) =

8
><

>:

1 if K
�

|= K,

0 otherwise.

• ip(K,K

�

) =

8
><

>:

#([K]\[K
�

])

#([K
�

])

if #([K

�

]) 6= 0,

0 otherwise.

For the weak drastic index (idw), the agent is considered fully satisfied as soon as
her beliefs/goals are consistent with the merged base. For the strong drastic index
(ids), in order to be fully satisfied, the agent must impose her beliefs/goals to the
group. The probabilistic index ip is not a Boolean one, leading to a more gradual
notion of satisfaction. The more similar to the agent’s base the merged base, the
more satisfied the agent. The similarity degree of K with K

�

is the (normalized)
number of models of K that are models of K

�

as well.

These three indexes are not fully independent: ensuring strategy-proofness for ip
is sufficient to ensure strategy-proofness for the two drastic indexes (provided that
the merging operator satisfies (IC1)) [13].

Proposition 9 Quota merging operators are strategy-proof for ip, idw and ids .

Strategy-proofness is hard to achieve, as illustrated in social choice theory, for the
aggregation of preference relations, by the Gibbard-Satterthwaite impossibility the-
orem [14,27,23]. Accordingly, it has been shown in [13] that most of existing merg-
ing operators are not strategy-proof. So this result is an interesting one for quota
operators.

5.4 Absolute and Relative Quotas

In the definition of quota merging operators, an absolute threshold, i.e., a fixed
integer not depending on the number of bases in the profile, has been used. But
it can prove also sensible to express quota in a relative manner, and to define the
models of the merged base as the interpretations satisfying at least half (or two
thirds, or any wanted ratio) of the initial bases. This technique is close to a well-
known voting method used in social choice theory, namely voting in committees
[5]. Let us call such operators k-ratio merging operators:

Definition 9 (ratio operators) Let k be a real number such that 0  k  1, E =

{K
1

, . . . , Kn} be a profile, and µ be an integrity constraint. The k-ratio merging

15



operator, denoted 4k, is defined in a model-theoretic way as:

[4k

µ(E)] =

8
><

>:

{! 2 [µ] | 8Ki 2 E ! |= Ki} if non empty,

{! 2 [µ] | #({Ki 2 E | ! |= Ki}) � k ⇥ n} otherwise.

Example 1 (continued) E = {K
1

, K

2

, K

3

, K

4

} with [K

1

] = {100, 001, 010, 101},
[K

2

] = {001, 101}, [K
3

] = {100, 000, 011}, and [K

4

] = {111}, and the integrity
constraints [µ] = W \ {010, 011}.
[40.25

µ (E)] = {001, 100, 101, 000, 111}, [40.3

µ (E)] = [40.5

µ (E)] = {001, 100, 101}.

One can quickly figure out the close connections between the two families of quota
merging operators (the one based on absolute quota and the other one on relative
quota, or ratio). Each ratio merging operator corresponds to a family of quota merg-
ing operators (one for each possible cardinality of the profile). And for each cardi-
nality of a profile, each (absolute) quota merging operator corresponds to a family
of ratio merging operators. The exact correspondence between absolute quotas and
ratios is made precise by the following proposition:

Proposition 10 Let E be any profile such that #(E) = n and let µ be an integrity
constraint.

(1) Let k be a real number such that 0  k  1. We have 4k

µ(E) ⌘ 4bk⇥nc
µ (E).

(2) Let k be an integer � 0. If k < n then for any k 2 [

k
n
,

k+1

n
), we have 4k

µ(E) ⌘
4k

µ(E); otherwise, we have 4k
µ(E) ⌘ 41

µ(E).

Although the intuitive motivations of the two definitions of these families look
different, it turns out that ratio merging operators have exactly the same proper-
ties with respect to computational complexity and strategy-proofness as (absolute)
quota merging operators (this is a direct consequence of Proposition 10). Only some
logical properties are different.

Proposition 11 4k operators satisfy (IC0), (IC2), (IC3), (IC4), (IC5), (IC7),
(IC8), and (Card). They satisfy (Maj) if k > 0 and (Disj) if k � 1

#(E)

. They
do not satisfy (IC1) and (IC6) in the general case.

Proposition 11 shows that all ratio merging operators satisfy (Maj), except 40,
which coincides with 40, and is trivial (as explained before). This highly contrasts
with quota operators which do not satisfy (Maj).
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6 The 4k
max Operator

Now, regardless of whether the chosen quota is absolute or not, an important point
is the choice of its value. Let us first observe that quota merging operators lead to a
sequence of merged bases that is monotonic with respect to logical entailment:

Proposition 12 Let E be a profile, µ be an integrity constraint. We have 4k+1

µ (E) |=
4k

µ(E) for all integers k � 0.

Each time k is increased, the resulting merged base is either equivalent to the one
obtained for the previous value of k or is logically stronger. In our finite proposi-
tional framework, the sequence (4k

µ(E))

(k�0)

is obviously stationary from some
stage. The value for which it becomes stationary is not interesting in itself, since
the corresponding merged base is either equivalent to the conjunction of the bases
of the profile (with the constraints), or to the inconsistent base. But an interesting
value of k is the one leading to the last nontrivial merged base.

Definition 10 (4kmax) Let E = {K
1

, . . . , Kn} be a profile, µ be an integrity con-
straint. Let k

max

= max({i  #(E) | 4i
µ (E) 6|= ?}). 4kmax is defined in a

model-theoretic way as:

[4kmax
µ (E)] =

8
><

>:

{! 2 [µ] | 8Ki 2 E ! |= Ki} if non empty,

{! 2 [µ] | #({Ki 2 E | ! |= Ki}) = k

max

} otherwise.

While very close to quota operators, the resulting operator 4k
max is not a true quota

operator since the value of kmax is not given a priori, but depends on E and µ.

Example 1 (continued) [4k
max

µ (E)] = {001, 100, 101}.

At first glance, 4k
max looks similar to the formula-based operator �C4 which se-

lects cardinality-maximal subsets in the union of the bases from the profile [15,3,4].
However, 4k

max and �

C4 are distinct: while both operators satisfy (Disj), 4k
max

satisfies (IC3) and (Maj) (see Proposition 1) and �

C4 satisfies none of them [15].
Indeed, 4k

max belongs to two important families of model-based merging opera-
tors, namely the 4⌃ family and the 4GMAX family when the drastic distance 5

dD is
used [19]:

Proposition 13 4k
max

= 4dD,⌃
= 4dD,GMAX

.

Accordingly, 4k
max exhibits many expected logical properties:

Lemma 1 4k
max satisfies (IC0 - IC8), (Maj), (Disj) and (Card).

5 For any !
1

,!
2

2 W, dD(!1

,!
2

) = 0 if !
1

= !
2

and dD(!1

,!
2

) = 1 otherwise.
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Since 4k
max is obtained by considering the problem of optimizing the quota (for

quota operators, k is given, so it does not need to be computed), the corresponding
inference problem is computationally harder than the inference problem for quota
operators (under the standard assumptions of complexity theory):

Lemma 2 MERGE(4k
max

) is ⇥p
2

-complete.

Clearly enough, if kmax is computed during an off-line pre-processing stage and
becomes part of the input afterwards, the complexity falls down to coNP.

Now, as to strategy-proofness, the 4k
max operator exhibits all the good properties

of quota operators:

Lemma 3 4k
max is strategy-proof for the three indexes ip, idw and ids .

The result directly follows from the fact that 4kmax
µ coincides with 4dD,⌃

µ (Propo-
sition 13), that is known to be strategy-proof [13].

7 GMIN Operators

Starting from 4k
max , one could wonder whether it is possible to constrain further

the quota operators so as to get operators with a higher inferential power, i.e,. al-
lowing more conclusions to be obtained. In this section we provide a family GMIN
of such operators. As far as we know, this family has never been considered up to
now in a propositional merging context.

Each operator 4d,GMIN of the GMIN family is parameterized by a pseudo-distance d:

Definition 11 (pseudo-distances) A pseudo-distance between interpretations is a
function d from W ⇥W to IN such that for every !

1

, !
2

2 W:

• d(!

1

,!

2

) = d(!

2

,!

1

), and
• d(!

1

,!

2

) = 0 if and only if !
1

= !

2

.

Any pseudo-distance between interpretations d induces a “distance” between an
interpretation ! and a formula K given by d(!, K) = min!0|=K d(!,!

0
).

Examples of such pseudo-distances are the drastic distance dD (cf. Footnote 5), and
the Dalal distance [11], noted dH , that is the Hamming distance between interpre-
tations (d(!

1

,!

2

) is equal to the number of atoms on which !

1

and !

2

differ).

Then 4d,GMIN operators are defined as:

Definition 12 (GMIN operators) Let d be a pseudo-distance, µ an integrity con-
straint, E = {K

1

, . . . , Kn} a profile and let ! be an interpretation. The “distance”
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! K
1

K
2

K
3

K
4

ddH ,GMIN(!, E)

000 1 1 0 3 (0, 1, 1, 3)

001 0 0 1 2 (0, 0, 1, 2)

100 0 1 0 2 (0, 0, 1, 2)

101 0 0 1 1 (0,0,1,1)

110 1 2 1 1 (1, 1, 1, 2)

111 1 1 1 0 (0, 1, 1, 1)

Table 1
4dH ,GMIN operator.

dd,GMIN(!, E) is defined as the list of numbers (d
1

, . . . , dn) obtained by sorting in in-
creasing order the multi-set {d(!, Ki) | Ki 2 E}. The models of 4d,GMIN

µ (E) are the
models ! of µ such that dd,GMIN(!, E) is minimal with respect to the lexicographic
ordering lex induced by the natural order, 6 i.e.,

! d,GMIN

E !

0 iff dd,GMIN(!, E) lex dd,GMIN(!
0
, E)

and
[4d,GMIN

µ (E)] = min([µ],d,GMIN

E ).

Example 1 (continued) [4dD,GMIN
µ (E)] = {001, 100, 101}. [4dH ,GMIN

µ (E)] = {101}.
The computations are reported in Table 1. Each row corresponds to a model ! of
the constraint µ. Each column Ki gives the distance dH(!, Ki) between a model
! of µ and the base Ki. The boldface row corresponds to the model of µ which
minimizes ddH ,GMIN(., E).

As stated by the following proposition, each GMIN operator refines �

k
max . As a

consequence, each of them refines also every quota merging operator which does
not lead to an inconsistent merged base, thanks to Proposition 12.

Proposition 14 For any pseudo-distance d, any integrity constraint µ and any pro-
file E, 4d,GMIN

µ (E) |= �

k
max

µ (E).

The choice of the drastic distance leads exactly to �

k
max :

Proposition 15 4dD,GMIN
= �

k
max .

Furthermore, GMIN operators are IC merging operators:

6 We give here the definition of GMIN by means of lists of numbers. Using Ordered
Weighted Averages, one could define it directly from distances (numbers) so as to fit the
definition of model-based operators (see [16]).
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Proposition 16 Let d be any pseudo-distance. 4d,GMIN satisfies (IC0 - IC8), and
(Disj). It does not satisfy (Card), (Maj) and (Wmaj) in the general case.

The significance of Proposition 14 is improved by the fact that 4d,GMIN satisfies
(IC1); Indeed, together with Proposition 16, it shows that 4d,GMIN preserves at least
all the information from the bases as those preserved by �

k
max , without leading to

an inconsistent merged base.

As shown by the previous proposition, each operator 4d,GMIN satisfies (Disj). This
is also the case of formula-based merging operators. However, GMIN operators
appear as much better operators than formula-based ones with respect to logical
properties. Indeed, while formula-based merging operators typically fail to satisfy
important logical properties [15], 4d,GMIN operators are IC merging operators (i.e.,
they satisfy (IC0)-(IC8)).

It is also interesting to observe that each 4d,GMIN satisfies a second weakening of
(Maj):

(Wmaj2) If (
W
E

2

)^µ is consistent, then 9n 4µ (E1

tE

2

t . . . t E

2| {z }
n

) |= 4µ(E2

)

(Wmaj2) adds just a precondition to the usual (Maj) property. It asks to listen to
the majority when at least one base of this majority is consistent with the integrity
constraints.

Note that the two weakenings of the postulate (Maj), namely (Wmaj) and (Wmaj2),
are independent of each other. For example, quota operators satisfy (Wmaj) but
they do not satisfy (Wmaj2), and GMIN operators satisfy (Wmaj2) but they do not
satisfy (Wmaj).

Proposition 17 Let d be any pseudo-distance. 4d,GMIN satisfies (Wmaj2).

To conclude with the logical properties, while at the definition level, GMIN oper-
ators are close to the well-known GMAX arbitration operators [19]: the difference
between them just lies in the choice of distinct aggregation functions from the lexi-
cographic family, GMIN vs. GMAX. However, the behaviours of 4d,GMIN and 4d,GMAX

from a logical point of view are quite different in general. Thus, though both opera-
tors are IC merging ones, 4dH ,GMIN satisfies (Disj) but does not satisfy the arbitration
postulate (Arb) (see [19] for details about (Arb)), while 4dH ,GMAX satisfies (Arb)
but does not satisfy (Disj). Accordingly, each operator is suited to one of the merg-
ing scenarios sketched in Section 1, but not to both of them.

Let us now investigate the strategy-proofness issue for GMIN operators. In the gen-
eral case, strategy-proofness of quota merging operators is lost. As shown in [13],
even if an operator is not strategy-proof in the general case, it may happen that
strategy-proofness is achievable under some restrictions. It turns out that strategy-
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proofness can be guaranteed for GMIN operators, but only in some very specific
cases:

Proposition 18 Let d be any pseudo-distance.

• 4d,GMIN is strategy-proof for ip if every base from the profile E is complete (i.e.,
each base has a unique model).

• 4d,GMIN is strategy-proof for the indexes idw and ids if every base from the profile
E is complete, or if #(E) = 2 and µ ⌘ >.

Considering some specific distances, additional strategy-proofness results can be
obtained:

Proposition 19

• 4dD,GMIN is strategy-proof for the three indexes idw , ip and ids .
• 4dH ,GMIN is strategy-proof for ip if and only if every base from the profile E is

complete.
• 4dH ,GMIN is strategy-proof for idw and ids if and only if every base from the profile
E is complete or if #(E) = 2 and µ ⌘ >.

Although GMIN operators can be seen as improvements of quota operators in the
sense that they allow to draw more conclusions, this gain in inferential power has
to be paid by the lost of most of the strategy-proofness properties, which are a main
advantage of quota operators.

As to the strategy-proofness criterion, the behaviour of GMIN operators is quite
good compared to other model-based operators [13].

Finally, let us turn to the computational complexity criterion. The next proposition
is a direct consequence of a result from [16]:

Proposition 20 Assume that the pseudo-distance d(!

1

,!

2

) of any pair of inter-
pretations !

1

and !

2

can be computed in time polynomial in |!
1

| + |!
2

|. Then
MERGE(4d,GMIN

) is in �

p
2

.

For specific choices of d, more precise results can be derived:

Proposition 21

• MERGE(4dD,GMIN
) is ⇥p

2

-complete.
• MERGE(4dH ,GMIN

) is �p
2

-complete.

As one may expect, the complexity of inference for GMIN operators is slightly
higher than the complexity of inference for quota operators (under the usual as-
sumptions of complexity theory). However, it remains at the first level of the poly-
nomial hierarchy under reasonable requirements on the pseudo-distance, and is
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comparable to the complexity of model-based operators. This shows that GMIN
operators are typically better merging operators than formula-based ones with re-
spect to the computational dimension (for many formula-based operators inference
is at the second level of the polynomial hierarchy).

8 Conclusion

In this paper, we have considered the standard unanimity condition for preference
aggregation in the setting of propositional merging. We have shown that this una-
nimity condition can be interpreted in two different ways in the merging framework.

The first one is about the models of the bases. It is already captured by the usual
merging postulates, and many existing merging operators satisfy it.

The second one is about the countermodels of the bases. While it is very natural, it
is not captured by existing postulates. This led us to introduce a new (Disj)unction
postulate.

Unfortunately, only few operators satisfy (Disj), and they are typically formula-
based operators. As such, they perform badly with respect to the standard crite-
ria used to evaluate merging operators, namely, logical properties, computational
complexity and strategy-proofness. Actually, the very argument to make use of
formula-based operators for a merging issue is that they are disjunctive in essence.
This is not very satisfying and this calls for disjunctive operators achieving better
trade-offs with respect to the three criteria.

In order to fill this gap, we have introduced two new families of disjunctive model-
based merging operators, namely quota operators and GMIN operators. Investigat-
ing their properties, we have shown that these operators are interesting alternatives
to formula-based merging operators. Thus, both quota and GMIN operators have a
complexity lying at the first level of the polynomial hierarchy, while the family of
formula-based merging operators does not offer this property. Quota operators are
strategy-proof unlike the great majority of other existing merging operators. Fur-
thermore, even if GMIN operators are not strategy-proof in the general case, these
operators perform quite well with respect to this criterion compared to other model-
based operators. Finally, GMIN operators are IC merging operators while formula-
based merging operators typically fail to satisfy IC constraints. Accordingly, our
results show that formula-based merging operators can be profitably replaced by
GMIN operators.
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A Proofs

Proof of Proposition 1: (UnaF) is equivalent to (Disj).

• Let us prove that (UnaF) implies (Disj). Suppose that
W
E is consistent with µ,

then take the formula ↵ =

W
E. Then clearly 8K 2 E, K |= ↵. Since

W
E is

consistent with µ there is at least one K s.t. K is consistent with µ. So by (UnaF)
we get 4µ(E) |= ↵, that is exactly the conclusion of (Disj).

• Let us show that (Disj) implies (UnaF). Suppose that 9K 2 E s.t. µ ^ K is
consistent and that 8K 2 E, K |= ↵. As 9K 2 E s.t. µ ^ K is consistent, we
have

W
E consistent with µ. So by (Disj) 4µ(E) |= W

E. Since the hypothesis
8K 2 E, K |= ↵ implies that

W
E |= ↵, by transitivity we obtain 4µ(E) |= ↵.

2

Proof of Proposition 2: (Disj) is equivalent to (UnaC).

• Let us prove that (Disj) implies (UnaC). Suppose that
W
E is consistent with µ.

Let ! be an interpretation such that 8K 2 E,! 6|= K. Then ! 6|= W
E. Since

�µ(E) |= W
E, if ! 6|= W

E, then ! 6|= �µ(E): this proves (UnaC).
• Let us prove that (UnaC) implies (Disj). Suppose that

W
E is consistent with µ.

Let ! be an interpretation such that ! |= �µ(E). If 8K 2 E,! 6|= K, then !

cannot be a model of �µ(E), so 9K 2 E, ! |= K, and consequently ! |= W
E:

this proves (Disj).

2

Proof of Proposition 3: The fact that conditions (1-6) of syncretic assignments
corresponds to IC postulates (IC0-IC8) is a consequence of the representation the-
orem given in [19]. So it remains to show that condition (d) corresponds to postulate
(Disj).

(If) Consider a merging operator 4 defined from a disjunctive syncretic assign-
ment. Let us show that 4 satisfies (Disj). Suppose that

W
E is consistent with µ.

This means that 9! 2 W such that ! |= W
E and ! |= µ. Towards a contradic-

tion, suppose that 4µ(E) 6|= W
E, that is 9!0 2 W such that !0 |= 4µ(E) and

!

0 6|= W
E. !0 |= 4µ(E) implies that !0 2 min([µ],E), that is @!00 |= µ such

that !00
<E !

0. Since !

0 6|= W
E and ! |= W

E we obtain by (d) that ! <E !

0.
Contradiction.

(Only If) Let 4 be a disjunctive IC merging operator (i.e., 4 satisfies (IC0-IC8)
and (Disj)). Then we define a syncretic assignment in the usual way [19], as fol-
lows: 8!,!0 2 W , ! E !

0 if and only if ! |= 4'{!,!0}(E). Let us show that
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condition (d) holds. Suppose that ! |= W
E and !

0 6|= W
E. This implies that

W
E

is consistent with '{!,!0}. By (Disj) we get that 4'{!,!0}(E) |= W
E. By (IC0) we

also have that 4'{!,!0}(E) |= '{!,!0}. Hence we have 4'{!,!0}(E) |= W
E^'{!,!0}.

By assumption
W
E^'{!,!0} ⌘ '{!}. Therefore 4'{!,!0}(E) |= '{!}. By (IC1) we

get that 4'{!,!0}(E) is consistent, hence 4'{!,!0}(E) ⌘ '{!}. By definition of the
assignment we finally get that ! <E !

0.
2

Proof of Proposition 4:

(IC0) If 4 satisfies (IC0), then by construction, 4d satisfies (IC0).
(IC1) If (

W
E) ^ µ is not consistent, then 4d

µ(E) is not consistent, so 4d does not
satisfy (IC1), even if 4 satisfies (IC1).

(IC2) If (
V
E)^µ is consistent, then (

V
E)^(WE)^µ is consistent as well. Hence,

if 4 satisfies (IC2), we get that 4d
IC(E) ⌘ (

V
E) ^ (

W
E) ^ µ ⌘ (

V
E) ^ µ.

(IC3) Obviously satisfied.
(IC4) Suppose that K

1

|= µ, that K
2

|= µ, and that 4 satisfies (IC4). To show that
4d satisfies (IC4), we must prove that 4d

µ({K1

, K

2

}) ^K

1

is consistent if and
only if 4d

µ({K1

, K

2

})^K

2

is consistent. So suppose that 4d
µ({K1

, K

2

})^K

1

is
consistent. Then 4d

(K
1

_K
2

)^µ({K1

, K

2

}) ^K

1

is consistent. In order to simplify
the notations, let us note µ

0 the formula (K

1

_ K

2

) ^ µ. Because K

1

|= µ and
K

2

|= µ, we have K

1

|= µ

0 and K

2

|= µ

0 and 4d
µ0({K

1

, K

2

}) ^ K

1

consistent.
Since 4 satisfies (IC4), 4d

µ0({K
1

, K

2

}) ^K

2

is also consistent and 4d satisfies
(IC4).

(IC5) and (IC6): As a counter-example, we consider four bases: [K
1

] = {000},
[K

2

] = {111}, [K
3

] = {000, 011, 110, 101}, [K
4

] = {001, 010, 100} and two
profiles E

1

= {K
1

, K

2

} and E

2

= {K
3

, K

4

}. Then [4dH ,⌃W
E

1

(E

1

)] = {000, 111}
and [4dH ,⌃W

E
2

(E

2

)] = {000, 001, 010, 011, 100, 101, 110}. So, as 4dH ,⌃W
E

1

(E

1

) and

4dH ,⌃W
E

2

(E

2

) are consistent, [4dH ,⌃W
E

1

(E

1

) ^4dH ,⌃W
E

2

(E

2

)] = {000}. With E = E

1

t
E

2

, we have [4dH ,⌃W
E

1

_
W

E
2

(E)] = {001, 010, 011, 100, 101, 110}. Consequently,

4dH ,⌃W
E

1

(E

1

) ^4dH ,⌃W
E

2

(E

2

) 6|= 4dH ,⌃W
E

1

_
W

E
2

(E

1

tE

2

), which contradicts (IC5) and

4dH ,⌃W
E

1

_
W

E
2

(E

1

t E

2

) 6|= 4dH ,⌃W
E

1

(E

1

) ^ 4dH ,⌃W
E

2

(E

2

), which contradicts (IC6).
(IC7) We consider a profile E, two integrity constraints µ

1

and µ

2

. We suppose
that 4 satisfies (IC7). We have to show that 4d

µ
1

(E) ^ µ

2

|= 4d
µ
1

^µ
2

(E), i.e.,
4

(

W
E)^µ

1

(E)^µ

2

|= 4
(

W
E)^µ

1

^µ
2

(E) . Let us note µ0
1

the formula (
W
E)^µ

1

.
We have 4

(

W
E)^µ

1

(E) ^ µ

2

⌘ 4µ0
1

(E) ^ µ

2

. As 4 satisfies (IC7), 4µ0
1

(E) ^
µ

2

|= 4µ0
1

^µ
2

(E). As 4µ0
1

^µ
2

(E) ⌘ 4
(

W
E)^µ

1

^µ
2

(E), the result holds.
(IC8) Suppose 4d

µ
1

(E)^µ
2

consistent. We must show that 4d
µ
1

^µ
2

(E) |= 4d
µ
1

(E)^
µ

2

, that means 4
(

W
E)^µ

1

^µ
2

(E) |= 4
(

W
E)^µ

1

(E) ^ µ

2

. With µ

0
1

⌘ (

W
E) ^ µ

1

,
we have 4

(

W
E)^µ

1

^µ
2

(E) ⌘ 4µ0
1

^µ
2

(E) consistent. As 4 satisfies (IC8) and
4µ0

1

^µ
2

(E) is consistent, we get 4µ0
1

^µ
2

(E) |= 4µ0
1

(E) ^ µ

2

. Since 4µ0
1

(E) ^
µ

2

⌘ 4
(

W
E)^µ

1

^µ
2

(E), the result holds: 4d satisfies (IC8) if 4 does.
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(Disj) If 4 satisfies (IC0), then by construction, 4d satisfies (Disj).

2

Proof of Proposition 5: Immediate from the two following equalities:

• [

V
E ^ µ] = {! 2 [µ] | 8Ki 2 E ! |= Ki}.

• [

W
C2pnkq(

V
j2C Kj) ^ µ] = {! 2 [µ] | #({Ki 2 E | ! |= Ki}) � k}.

2

Proof of Proposition 6:

(IC0) Obvious from the definition of 4k.
(IC1) Consider the following counter-example: E = {K

1

, K

2

}; K
1

= {a}, K
2

=

{¬a}, k = 2 and µ = >. µ is consistent but 4k
µ(E) is not.

(IC2) Obvious from the definition of 4k.
(IC3) Obvious from the definition of 4k.
(IC4) We have to show that if K

1

|= µ, K
2

|= µ, and 4k
µ({K1

, K

2

}) ^K

1

6|= ?,
then 4k

µ({K1

, K

2

}) ^K

2

6|= ?.
Let E = {K

1

, K

2

}. Assume that K
1

|= µ and K

2

|= µ. There are two cases:
• K

1

^ K

2

^ µ is consistent. Then 4k
µ({K1

, K

2

}) ⌘ K

1

^ K

2

^ µ. Since
4k

µ({K1

, K

2

}) ^K

2

is consistent, (IC4) is satisfied.
• K

1

^K

2

^ µ is inconsistent.
Then [4k

µ({K1

, K

2

})] = {! 2 [µ] | #({Ki 2 E | ! |= Ki}) � k}. Four cases
for k have to be considered:

k � 3. No interpretation can satisfy k bases of E since #(E) = 2, hence 4k
µ({K1

,

K

2

}) ⌘ ? and (IC4) trivially holds.
k = 2. Again, no interpretation can satisfy k bases of E since #(E) = 2 and (by

assumption) K
1

^K

2

^ µ |= ?. (IC4) trivially holds as well.
k = 1. The models of the merged base are the models of µ satisfying one base of

E. Hence, the result of the merging process is equivalent to (K

1

_K
2

)^µ.
Therefore, 4k

µ({K1

, K

2

}) ^ K

2

is equivalent to K

2

, which is consistent
(remind that every base from a profile is consistent). Again, (IC4) holds.

k = 0. We have 4k
µ({K1

, K

2

}) ⌘ µ. Since K

2

^ µ is equivalent to K

2

that is
consistent, (IC4) is satisfied.

(IC5) In order to show that (IC5) holds, we have to prove that 4µ(E1

)^4µ(E2

) |=
4µ(E1

t E

2

). We first prove the following lemma:
Lemma 4 Let E,E 0 and F be three profiles, with E

0
= E t F . Then:

• if
V
E

0 ^ µ is consistent, then 4k
µ(E

0
) |= 4k

µ(E).
• if

V
E ^ µ is not consistent, then 4k

µ(E) |= 4k
µ(E

0
).

Proof of Lemma 4:
• If

V
E

0 ^ µ is consistent, then
V
E ^ µ is consistent since E

0
= E t F . Hence
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4k
µ(E) ⌘ V

E ^µ, and 4k
µ(E

0
) ⌘ V

E

0^µ. Since
V
E

0^µ ⌘ V
E ^V

F ^µ,
we get 4k

µ(E
0
) |= 4k

µ(E).
• If

V
E ^ µ is inconsistent, then [4k

µ(E)] = {! 2 [µ] | #({Ki 2 E | ! |=
Ki}) � k}; there are two cases:
k > #(E). We have 4k

µ(E) ⌘ ?, since no model of µ can satisfy k bases of
E. As a consequence, we get 4k

µ(E) |= 4k
µ(E

0
).

k  #(E). We have [4k
µ(E)] = {! 2 [µ] | #({Ki 2 E | ! |= Ki}) � k}

and [4k
µ(E

0
)] = {! 2 [µ] | #({Ki 2 E

0 | ! |= Ki}) � k}. Since every
model of µ satisfying at least k bases from E also satisfies at least k bases
from its superset E 0

= E t F , we obtain that 4k
µ(E) |= 4k

µ(E
0
).

2

With E = E

1

and E

0
= E

1

t E

2

, Lemma 4 shows that if
V
E

1

^ µ is incon-
sistent, then 4k

µ(E1

) |= 4k
µ(E1

t E

2

). Similarly, we also get that 4k
µ(E2

) |=
4k

µ(E1

t E

2

) (E
1

and E

2

play symmetric roles here). As a consequence, ifV
E

1

^ µ is inconsistent or
V
E

2

^ µ is inconsistent, we have that 4k
µ(E1

) ^
4k

µ(E2

) |= 4k
µ(E1

t E

2

), since classical entailment is monotonic. Hence (IC5)
is satisfied.

The case when
V
E

1

^µ is consistent and
V
E

2

^µ is consistent remains to be
considered. In this case, we have 4k

µ(E1

) ⌘ V
E

1

^ µ and 4k
µ(E2

) ⌘ V
E

2

^ µ

by definition of the quota merging operator. Hence, 4k
µ(E1

)^4k
µ(E2

) ⌘ V
E

1

^V
E

2

^ µ. Now, every quota operator is such that, for any profile E and any
integrity constraint µ,

V
E ^ µ |= 4k

µ(E) (this is a direct consequence of the
definition of 4k). Taking

V
E equivalent to

V
E

1

^ V
E

2

gives that (IC5) also
holds in this case.

(IC6) Consider the following counter-example: P = {a}, E
1

= {{a}, {a}, {¬a}},
E

2

= {{a}, {a}, {¬a}} and µ = >. We have 42

µ(E1

) ⌘ a and 42

µ(E2

) ⌘ a,
hence the conjunction 42

µ(E1

) ^ 42

µ(E2

) is consistent. We also have 42

µ(E1

t
E

2

) ⌘ >, which does not entail 42

µ(E1

).
(IC7) We have to show that 4k

µ
1

(E) ^ µ

2

|= 4k
µ
1

^µ
2

(E). We consider two cases:
(1) If

V
E ^ µ

1

is consistent, then 4k
µ
1

(E)^ µ

2

⌘ V
E ^ µ

1

^ µ

2

. Since we haveV
E ^ µ

1

^ µ

2

|= 4k
µ
1

^µ
2

(E), (IC7) trivially holds.
(2) If

V
E ^ µ

1

is inconsistent, then we have

[4k
µ
1

(E) ^ µ

2

] = {! 2 [µ

1

] | #({Ki 2 E | ! |= Ki}) � k} \ [µ

2

].

Furthermore, when
V
E ^ µ

1

is inconsistent, we also have that
V
E ^ µ

1

^ µ

2

is
inconsistent and

[4k
µ
1

^µ
2

(E)] = {! 2 [µ

1

^ µ

2

] | #({Ki 2 E | ! |= Ki}) � k}.
Therefore 4k

µ
1

(E) ^ µ

2

⌘ 4k
µ
1

^µ
2

(E), and (IC7) is satisfied.
(IC8) We have to show that if 4k

µ
1

(E) ^ µ

2

is consistent, then 4k
µ
1

^µ
2

(E) |=
4k

µ
1

(E) ^ µ

2

. We consider three cases:
(1) If µ

1

^µ

2

^V
E is consistent, then µ

1

^V
E is consistent as well and we have

4k
µ
1

^µ
2

(E) ⌘ µ

1

^ µ

2

^ V
E. Hence 4k

µ
1

^µ
2

(E) |= 4k
µ
1

(E) ^ µ

2

, and (IC8) is
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satisfied.
(2) If µ

1

^ V
E is inconsistent, then µ

1

^ µ

2

^ V
E is inconsistent. In this case:

[4k
µ
1

(E)] = {! 2 [µ

1

] | #({Ki 2 E | ! |= Ki}) � k}.

Since [4k
µ
1

^µ
2

(E)] = {! 2 [µ

1

^ µ

2

] | #({Ki 2 E | ! |= Ki}) � k}, we have:

4k
µ
1

^µ
2

(E) |= 4k
µ
1

(E) ^ µ

2

,

and (IC8) holds.
(3) The remaining case is when µ

1

^ µ

2

^ V
E is inconsistent and µ

1

^ V
E is

consistent. In this case, 4k
µ
1

(E) ^ µ

2

⌘ µ

1

^ V
E ^ µ

2

is inconsistent, hence
(IC8) trivially holds.

(Disj) There are two cases:
(1) If (

V
E)^µ is consistent, then 4k

µ(E) ⌘ (

V
E)^µ and 4k

µ(E) |= (

W
E)^µ.

(2) If (
V
E)^ µ is not consistent, then the models of 4k

µ(E) are the models of µ
which satisfy at least k bases (k � 1) of the profile E. So they also are models
of (

W
E) ^ µ, and the result holds.

(Maj) Consider the following counter-example: P = {a}, E
1

= {K
1

}, E
2

=

{K
2

}, K
1

= {a}, K
2

= {¬a}, k = 1, µ = >. The interpretation ! = (a = 1)

is a model of 41

µ(E1

t E

2

t . . . t E

2| {z }
n

) for every n � 0 since it satisfies K

1

.

Contrastingly, ! is not a model of 41

µ(E2

) ⌘ ¬a.

2

Proof of Proposition 7:

(Card) Let M
1

,M

2

2 MAXCONSµ(E) such that #(M

1

)  #(M

2

). By hypothesis
4k

µ(E) ^M

1

is consistent. There are two cases:
(1) (

V
E) ^ µ is consistent. Then 4k

µ(E) ⌘ (

V
E) ^ µ. As a consequence,

MAXCONSµ(E) = {E}. So 4k
µ(E) ^M

2

is consistent.
(2) (

V
E) ^ µ is not consistent. Let ! be any model of 4k

µ(E) ^M

1

;
! is a model of M

1

which satisfies at least k bases of the profile E (since 4k
µ(E)

is consistent when 4k
µ(E) ^M

1

is consistent). Since M

1

2 MAXCONSµ(E), we
can deduce that #(M

1

) � k. Furthermore, since #(M

1

)  #(M

2

), any model
!

0 of M
2

satisfies µ and at least k bases of E. Subsequently, !0 is a model of
4k

µ(E) as well, and 4k
µ(E) ^M

2

is consistent.
(Wmaj) Suppose that 4k

µ(E2

) is consistent. There are two cases:
(1) (

V
E

2

) ^ µ is consistent. Then 4k
µ(E2

) ⌘ (

V
E

2

) ^ µ.

• If
V
(E

1

tE

2

)^µ is consistent, then 4k
µ(E1

tE

2

) ⌘ V
(E

1

tE

2

)^µ, which is
trivially consistent with (

V
E

2

) ^ µ, hence with 4k
µ(E2

). Thus (Wmaj) holds
with n = 1.

• If
V
(E

1

t E

2

) ^ µ is not consistent, then for any integer n � 0,
V
(E

1

t
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E

2

t . . . t E

2| {z }
n

) is not consistent. The models of 4k
µ(E1

tE
2

t . . . t E

2| {z }
n

) are by

definition the models of µ that satisfies at least k bases of E
1

t E

2

t . . . t E

2| {z }
n

.

Let ! be a model of 4k
µ(E2

). Since #(E

2

) � 1, ! satisfies µ and at least
one base of E

2

. Hence, for any n � k, ! satisfies µ and at least k bases of
E

1

t E

2

t . . . t E

2| {z }
n

. Subsequently, ! is a model of 4k
µ(E1

t E

2

t . . . t E

2| {z }
n

)

and of 4k
µ(E2

).
(2) (

V
E

2

) ^ µ is not consistent. Let us consider any model ! of 4k
µ(E2

);
! satisfies µ and at least k bases of E

2

. Hence ! satisfies µ and at least k bases
of E

1

tE

2

, so ! is a model of 4k
µ(E1

tE

2

)^4k
µ(E2

). Thus (Wmaj) holds with
n = 1.

2

Proof of Proposition 8:

• Membership: we give a polynomial reduction from MERGE(4k) to UNSAT(3),
the language defined by UNSAT(3) = {h�

1

,�

2

,�

3

i | �
1

, �
2

, �
3

2 L and �

1

2
UNSAT or (�

2

2 SAT and �

3

2 UNSAT)}.
We have shown in Proposition 5 that when

V
E ^ µ is inconsistent, we have

4k
µ(E) ⌘ (

W
C2pnkq

V
j2C Kj)^µ where pnkq = {C ✓ {1, . . . , n} | #(C) = k}.

Moreover, (
W

C2pnkq
V

j2C Kj)^µ has a size polynomial in |E|+ |µ|. Let f be the
polynomial reduction which assigns to every instance hE, µ,↵i of MERGE(4k)
the instance h�

1

= (

W
C2pnkq

V
j2C Kj) ^ µ ^ ¬↵, �

2

=

V
E ^ µ,�

3

=

V
E ^

µ^¬↵i of UNSAT(3). As
V
E ^µ |= 4k

µ(E), we have hE, µ,↵i 2 MERGE(4k)
if and only if (

W
C2pnkq

V
j2C Kj) ^ µ ^ ¬↵ 2 UNSAT or (

V
E ^ µ 2 SAT andV

E ^ µ ^ ¬↵ 2 UNSAT).
• Hardness: we do not give a direct polynomial reduction of UNSAT(3) to

MERGE(4k), but give a faithful and modular polynomial traduction of the full-
meet inference problem (which is equivalent to the inference problem from a
merged base using the full meet merging operator or, equivalently, the quota
operator with quota 0) to the inference from a merged base using any quota op-
erator. The full-meet inference problem can be defined by: for all �

1

, �
2

, �
3

2 L,
we have �

1

�FM �

2

|= �

3

if and only if:

if �
1

^ �

2

is consistent
then �

1

^ �

2

|= �

3

else �

2

|= �

3

Inference from a merged base using any quota operator can be defined as fol-
lows; for any profile E, integrity constraint µ and formula ↵, we have 4k

µ(E) |=
↵ if and only if:
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if
V
E ^ µ is consistent

then
V
E ^ µ |= ↵

else (

W
C2pnkq

V
j2C Kj) ^ µ |= ↵

To any integer k � 0 and triple of formulas h�
1

,�

2

,�

3

i of L, we can associate
in polynomial time the triple hE = {�

1

}t {�
2

}k, µ = �

2

,↵ = �

3

i where {�
2

}k
is the multi-set in which �

2

appears k times (in particular, the empty multi-set
when k = 0). We have �

1

�FM �

2

|= �

3

if and only if 4k
µ(E) |= ↵. Since

the full-meet inference problem is coBH(3)-hard (cf. Proposition 4.3 from [24]),
this concludes the proof.

2

Proof of Proposition 9: We first consider the probabilistic index ip.
Reductio ad absurdum. Assume that there exists an integer k � 0 and an integrity
constraint µ such that 4k

µ is not strategy-proof for ip. Hence there exists a profile
E = {K

2

, . . . , Kn}, two bases K and K

0 such that

ip(K,4k
µ(E t {K})) < ip(K,4k

µ(E t {K 0})) (A.1)

There are two cases:

(1) 4k
µ(E t {K}) is inconsistent.Then 8! |= K, we have ! 6|= 4k

µ(E t {K}).
Hence, 8! |= K, ! does not satisfy µ or ! satisfies strictly less than k � 1 bases
of E. In those two cases, ! cannot satisfy 4k

µ(E t {K 0}) since it satisfies at most
k � 1 bases from E t {K 0} or it does not satisfy µ.

Therefore, 8! |= K,! 6|= 4k
µ(E t {K 0}). Hence #([K] \ [4k

µ(E t {K 0})]) = 0.

As a consequence, ip(K,�(Et{K 0}) = 0, which prevents from any manipulation
for ip.

(2) 4k
µ(E t {K}) is consistent. Hence we have from Inequation (A.1):

#([K] \ [4k
µ(E t {K})])

#([4k
µ(E t {K})]) <

#([K] \ [4k
µ(E t {K 0})])

#([4k
µ(E t {K 0})]) (A.2)

Two cases have to be considered:

• V
E ^ K ^ µ is consistent. Then 4k

µ(E t {K}) ⌘ V
E ^ K ^ µ. Hence

each model of 4k
µ(E t {K}) is a model of K, which implies that the value

ip(K,4k
µ(E t{K})) = 1 is maximum, so it cannot be improved, and no manip-

ulation is possible in this case.
• V

E ^K ^µ is inconsistent. Then 4k
µ(E t{K}) ⌘ (

_

C2pnkq
(

^

j2C
Kj))^µ, where

K

1

= K and E = {K
2

, . . . , Kn}. As 4k
µ(E t {K}) is consistent, there are two

cases:
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–
V
E ^K

0 ^ µ is consistent. Then 4k
µ(E t {K 0}) ⌘ V

E ^K

0 ^ µ. No model
of K is a model of 4k

µ(E t {K 0}). Indeed, if it were not the case, there would
exist an interpretation ! such that ! |= K and ! |= V

(Et{K 0})^µ. Then we
would have ! |= V

(E t {K}) ^ µ which is impossible since
V
E ^K ^ µ is

inconsistent. Hence [K]\ [4k
µ(E t {K 0})] = ; and ip(K,4k

µ(E t {K 0}) = 0,
which prevents from any manipulation for ip.

–
V
E ^ K

0 ^ µ is inconsistent. Then 4k
µ(E t {K 0}) ⌘ (

_

C2pnkq
(

^

j2C
K

0
j)) ^ µ,

where K

0
1

= K

0 and K

0
i = Ki for i > 1 .

If ! |= K and ! 6|= 4k
µ(E t {K}), then ! does not satisfy µ or ! satisfies

strictly less than k � 1 bases Ki with i > 1. In the two cases, ! cannot be a
model of 4k

µ(E t {K 0}). As a consequence:

#([K] \ [4k
µ(E t {K})]) � #([K] \ [4k

µ(E t {K 0})]). (A.3)

On the other hand, if ! 6|= K and ! |= 4k
µ(E t {K}), then there exist at

least k bases Ki with i > 1 such that ! |= Ki ^ µ. Then ! |= 4k
µ(E t {K 0}),

and subsequently:

#([¬K] \ [4k
µ(E t {K})])  #([¬K] \ [4k

µ(E t {K 0})]). (A.4)

In order to simplify the notations, we set:
x = #([K] \ [4k

µ(E t {K})]), y = #([¬K] \ [4k
µ(E t {K})]),

x

0
= #([K] \ [4k

µ(E t {K})]), y0 = #([¬K] \ [4k
µ(E t {K})]),

Inequation (A.2) becomes:
x

x+ y

<

x

0

x

0
+ y

0 . Since y  y

0 from (A.4), we

have:
x

x+ y

<

x

0

x

0
+ y

. From (A.3), we know that x � x

0. Hence we can write

x

0
= x� z, with z � 0. We get

x

x+ y

<

x� z

x+ y � z

, which is equivalent to:

(x)(x+ y � z)

(x+ y)(x+ y � z)

<

(x� z)(x+ y)

(x+ y � z)(x+ y)

,

hence zy < 0 with y, and z positive: this is impossible.

A manipulation for idw entails a manipulation for ip, even if the operator does not
satisfy (IC1) (see [13]). So the strategy-proofness of quota merging operators for
idw comes from the above proof for ip.

Finally, the last case concerns the strong drastic index ids . Let us suppose that there
is a manipulation for this index: assume that there exists an integer k � 0 and an
integrity constraint µ such that 4k

µ is not strategy-proof for ids . Hence there exist a
profile E = {K

2

, . . . , Kn}, two bases K and K

0 such that

ids(K,4k
µ(E t {K})) < ids(K,4k

µ(E t {K 0}).
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This inequation implies that:

ids(K,4k
µ(E t {K})) = 0 so 4k

µ (E t {K}) 6|= K

and
ids(K,4k

µ(E t {K 0})) = 1 so 4k
µ (E t {K 0}) |= K.

If 4k
µ(E t {K 0}) is consistent, this implies a manipulation for the index ip (see

[13]), and we have seen that it is impossible in the first part of the proof. Now, if
4k

µ(E t {K 0}) is not consistent, then there are two cases:

• k > #(E t {K 0}). In this case, we have k > #(E t {K}). Then 4k
µ(E t {K})

is not consistent and 4k
µ(E t {K}) |= K, which contradicts the assumption.

• k  #(E t {K 0}). In this case, there is no model of µ which satisfies k bases
among {K

2

, . . . , Kn, K
0}. Since 4k

µ(E t {K}) is consistent, the models of
4k

µ(E t {K}) are models of K, which contradicts the assumption.

Hence, no manipulation is possible when 4k
µ(Et{K 0}) is not consistent, and quota

merging operators are strategy-proof for ids .
2

Proof of Proposition 10: There are two cases:
(1) If

V
E ^ µ is consistent, 4k

µ(E) ⌘ V
E ^ µ ⌘ 4k

µ(E) for every integer k � 0

and every real number k 2 [0, 1].
(2) If

V
E ^ µ is not consistent, then we consider two cases:

• 4k
µ(E) is consistent. Let ! be a model of 4k

µ(E). Then ! satisfies µ and at least
k bases of E. So ! satisfies µ and a ratio of bases of E greater or equal to k =

k
n

.

Hence ! |= 4k

µ(E), and as a consequence, 4k
µ(E) |= 4k

µ(E). Conversely, if

4k

µ(E) is consistent and ! is a model of 4k

µ(E), then ! satisfies µ and a ratio
of bases of E greater or equal to k . So ! satisfies µ and at least k = bk ⇥ nc
bases of E. Hence ! |= 4k

µ(E), and as a consequence, 4k

µ(E) |= 4k
µ(E). This

completes the proof.
• 4k

µ(E) is not consistent. Then no model of µ satisfies at least k bases of E. If
k � n, no model of µ satisfies a ratio of bases of E equal to 1 (since

V
E ^ µ

is not consistent). Hence 41

µ(E) is inconsistent, and as a consequence, we have
41

µ(E) ⌘ 4k
µ(E). If k < n, no model of µ satisfies a ratio of bases of E greater

or equal to k =

k
n

(otherwise it would satisfy at least k bases of E). Hence

4k

µ(E) is inconsistent, and as a consequence, 4k

µ(E) ⌘ 4k
µ(E).

2

Proof of Proposition 11: Thanks to Proposition 10, many proofs for the ratio
operators can be deduced from the proofs for the corresponding absolute quota
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operators. More precisely, each time the cardinality of the profile E can be fixed
at the beginning of the proof, i.e. for (IC0), (IC1), (IC2), (IC3), (IC4), (IC7),
(IC8), (Disj) for a ratio � 1

#(E)

and (Card), the corresponding proof for the ratio
operators can be obtained from the proof for the absolute quota operators by making
the following changes; let n be the cardinality of the initial profile E, and let k and
k be two numbers linked as explained in Proposition 10; replace

• h4k
µi by h4k

µi,
• hk basesi by h a ratio k =

k
n

of basesi,
• h{! 2 [µ] | #({Ki 2 E | ! |= Ki}) � k}iby h{! 2 [µ] | #({Ki2E|!|=Ki})

n
� k}i

Thus only three proofs are missing :

• (IC5): We consider two profiles E
1

with #(E

1

) = n

1

and E

2

with #(E

2

) = n

2

.
If k is the given ratio, we note k

1

= k⇥n

1

, k
2

= k⇥n

2

and k = k⇥(n

1

+n

2

) =

k

1

+ k

2

.
If 4k

µ(E1

)^4k

µ(E2

) is not consistent, then the implication is obvious. Otherwise,

let us consider any model ! of 4k

µ(E1

) ^4k

µ(E2

). There are three cases:

– (

V
E

1

) ^ µ and (

V
E

2

) ^ µ are consistent. Then 4k

µ(E1

) ⌘ (

V
E

1

) ^ µ and

4k

µ(E2

) ⌘ (

V
E

2

) ^ µ. In that case, ! |= (

V
E

1

) ^ (

V
E

2

) ^ µ, so
V
(E

1

t
E

2

)^µ is consistent. Hence 4k

µ(E1

tE

2

) ⌘ (

V
E

1

)^ (

V
E

2

)^µ, and we have

4k

µ(E1

) ^4k

µ(E2

) |= 4k

µ(E1

t E

2

).
– One but not both of (

V
E

1

) ^ µ and (

V
E

2

) ^ µ is consistent. Assume that
(

V
E

1

) ^ µ is consistent and (

V
E

2

) ^ µ is not (the remaining case is similar
by symmetry). Let us consider ! that satisfies µ, n

1

bases of E
1

, and at least
k

2

bases of E
2

. So it satisfies at least n
1

+ k

2

bases of E
1

t E

2

. Subsequently,
! satisfies µ and a ratio greater or equal to n

1

+k
2

n
1

+n
2

of bases of E
1

t E

2

. Since
n

1

� k

1

, we have:

n

1

+ k

2

n

1

+ n

2

� k

1

+ k

2

n

1

+ n

2

� k

n

1

+ n

2

� k.

Hence ! satisfies µ and a ratio greater or equal to k bases of E

1

t E

2

. So
! |= 4k

µ(E1

t E

2

).
– (

V
E

1

) ^ µ is not consistent and (

V
E

2

) ^ µ is not consistent. Then, ! satisfies
µ, at least k

1

bases of E
1

, and at least k
2

bases ok E

2

. Hence it satisfies at least
k

1

+ k

2

= k bases of E
1

t E

2

. So ! satisfies µ and a ratio greater or equal to
k

n
1

+n
2

bases of E
1

t E

2

; subsequently, ! |= 4k

µ(E1

t E

2

).
• (IC6): Consider the following counter-example: P = {a}, E

1

= {{a}, {a}, {a},
{¬a}}, E

2

= {{a}, {¬a}, {¬a}} and µ = >. We have 4
1

3

µ (E1

) ⌘ a and

4
1

3

µ (E2

) ⌘ >, hence the conjunction 4
1

3

µ (E1

) ^ 4
1

3

µ (E2

) is consistent. We also

have 4
1

3

µ (E1

t E

2

) ⌘ >, which does not entail 4
1

3

µ (E1

).
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• (Maj): We want to show that 9n 2 IN,4k

µ(E1

t E

2

t . . . t E

2| {z }
n

) |= 4k

µ(E2

).

In order to simplify the proof, let us introduce the following notations:
k

!
1

= #({K | K 2 E

1

and ! |= K}),
k

!
2

= #(K | K 2 E

2

and ! |= K}),
n

1

= #(E

1

),
n

2

= #(E

2

),
We consider two cases:
(1) (

V
E

2

) ^ µ is consistent. Then there are two cases:
–

V
(E

1

tE

2

)^ µ is consistent. Then 4k

µ(E1

tE

2

) ⌘ (

V
E

1

)^ (

V
E

2

)^ µ and

4k

µ(E2

) |= (

V
E

2

) ^ µ. Hence the property holds with n = 1.
–

V
(E

1

tE

2

)^ µ is not consistent. Then for any n � 1,
V
(E

1

tE

2

t . . . t E

2| {z }
n

)

^µ is also not consistent. Reductio ad absurdum: suppose that there is a world
! such that, for any integer n � 0, ! |= 4k

µ(E1

t E

2

t . . . t E

2| {z }
n

) and ! 6|=

4k

µ(E2

). Then ! is a model of µ which satisfies a ratio greater or equal
to k of bases of E

1

t E

2

t . . . t E

2| {z }
n

, and ! does not satisfy (

V
E

2

) ^ µ.

Hence ! is a model of (
W
E

1

) ^ µ and it is not a model of (
W
E

2

) ^ µ (sinceV
(E

1

t E

2

) ^ µ is not consistent). Subsequently ! satisfies exactly k

!
1

bases
of E

1

t E

2

t . . . t E

2| {z }
n

among the n

1

+ n ⇥ n

2

bases of this profile, for any

n >

k!
1

�k⇥n
1

k⇥n
2

. So ! satisfies a ratio lower than k of bases of E
1

tE
2

t . . . t E

2| {z }
n

.

Contradiction. So 4k

µ(E1

t E

2

t . . . t E

2| {z }
n

) |= 4k

µ(E2

) .

(2) (
V
E

2

) ^ µ is not consistent. Reductio ad absurdum. Suppose that there is
a world ! such that, for any integer n � 0, ! |= 4k

µ(E1

t E

2

t . . . t E

2| {z }
n

) and

! 6|= 4k

µ(E2

).

Since ! 6|= 4k

µ(E2

), we have k!
2

n
2

< k, so k

!
2

< k ⇥ n

2

; hence, we can note
k

!
2

= k ⇥ n

2

� ✏

!
2

for some ✏

!
2

> 0.
Since ! |= 4k

µ(E1

t E

2

t . . . t E

2| {z }
n

), we also have k!
1

+n⇥k!
2

n
1

+n⇥n
2

� k. Let n! be

any integer � 0 such that n! >

k!
1

✏!
2

. Then:
k

!
1

✏

!
2

� n! < 0, so k

!
1

� n! ⇥ ✏

!
2

< 0,

hence
k

!
1

� n! ⇥ ✏

!
2

n

1

+ n! ⇥ n

2

< 0. So we have

n! ⇥ k ⇥ n

2

n

1

+ n! ⇥ n

2

+

k

!
1

� n! ⇥ ✏

!
2

n

1

+ n! ⇥ n

2

<

n! ⇥ k ⇥ n

2

n

1

+ n! ⇥ n

2
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and, since n

1

> 0:

n! ⇥ k ⇥ n

2

n

1

+ n! ⇥ n

2

<

n! ⇥ k ⇥ n

2

n! ⇥ n

2

=

k ⇥ n

2

n

2

= k.

So:
n! ⇥ k ⇥ n

2

+ k

!
1

� n! ⇥ ✏

!
2

n

1

+ n! ⇥ n

2

=

k

!
1

+ n! ⇥ k

!
2

n

1

+ n! ⇥ n

2

< k.

Hence ! 6|= 4k

µ(E1

t E

2

t . . . t E

2| {z }
n!

).

Furthermore, increasing further the number of copies of E
2

in the profile can-
not enforce ! to satisfy the merged base: 8n � n!,! 6|= 4k

µ(E1

tE
2

t . . . t E

2| {z }
n

).

So we know that for every ! such that 9n 2 IN,! |= 4k

µ(E1

tE

2

t . . . t E

2| {z }
n

)

and ! 6|= 4k

µ(E2

), one can find an integer n! � 0 such that ! 6|= 4k

µ(E1

t
E

2

t . . . t E

2| {z }
n!

). To conclude the proof, it is sufficient to consider N = max!2Wn!:

for every n � N , we have 4k

µ(E1

t E

2

t . . . t E

2| {z }
n

) |= 4k

µ(E2

).

2

Proof of Proposition 12: If
V
E ^ µ is consistent, then 4k+1

µ (E) ⌘ 4k
µ(E) ⌘V

E ^ µ, and the property holds. If
V
E ^ µ is inconsistent, then whenever an

interpretation ! satisfies at least k + 1 bases from E, it satisfies at least k elements
from E, and the conclusion follows.

2

Proof of Proposition 13: By definition, the models of 4dD,⌃
µ (E) are exactly the

models ! of µ minimizing dD(!, E) =

P
K2E dD(!, K). Since dD is drastic, the

number of bases of E satisfied by ! is exactly #(E)�dD(!, E), hence the minimal
value of dD(!, E) when ! varies among the models of µ is equal to #(E)� kmax,
and this shows that 4kmax

µ (E) ⌘ 4dD,⌃
µ (E). Finally, the fact that 4dD,⌃

µ = 4dD,GMAX
µ

(Theorem 4 from [18]) concludes the proof.
2

Proof of Lemma 1: Since 4kmax
µ coincides with the IC merging operator 4dD,⌃

µ

(Proposition 13), the fact that it satisfies (IC0) - (IC8) and (Maj) is a direct con-
sequence of Theorem 2 from [19]. Now, the fact that it also satisfies (Disj) and
(Card) comes from Proposition 6 and the fact that 4kmax

µ can be associated to an
equivalent quota merging operator (such a quota merging operator is the one with
k = kmax: while the prior computation of kmax is necessary to get a quota operator,
its unique impact concerns the computational aspects (but not the logical ones)).

2
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Proof of Lemma 2: The result directly follows from the fact that 4kmax
µ coincides

with 4dD,⌃
µ (Proposition 13), which can be considered as the DA2 merging operator

4dD,MAX,⌃
µ , where each base consists of a single formula (see [16]). Theorem 3 from

[16] completes the proof.
2

Proof of Lemma 3: The result directly follows from the fact that 4kmax
µ coincides

with 4dD,⌃
µ (Proposition 13), and Theorem 2 from [12].

2

Proof of Proposition 14: Let us show that if ! and !

0 are two models of µ such that
! satisfies kmax bases from E and !

0 satisfies k0 bases from E, with k

0
< kmax, then

dd,GMIN(!, E) is strictly lower than dd,GMIN(!
0
, E) with respect to the lexicographic

ordering lex. This is easy since (1) when ! satisfies kmax bases from E and d is
a pseudo-distance, the kmax first coordinates of dd,GMIN(!, E) are equal to 0, and (2)
when !

0 satisfies stricly less bases from E and d is a pseudo-distance, the k

th
max

coordinate of dd,GMIN(!
0
, E) is not equal to 0.

2

Proof of Proposition 15: From Proposition 14, we know that 4dD,GMIN
µ (E) |=

4kmax
µ (E). So it remains to show that 4kmax

µ (E) |= 4dD,GMIN
µ (E). Let us consider a

model ! of 4kmax
µ (E), where E = {K

1

, . . . , Kn}.

First suppose that (
W
E)^µ is consistent. Then ! satisfies µ and a maximal number

k of bases Ki (i.e., there is no !

0 that satisfies more than k bases), and k is strictly
greater than 0. Hence, the k first elements of the list ddD,GMIN(!, {K1

, . . . , Kn})
are 0, and the n � k following ones are 1. Since this list is necessarily minimal
with respect to the lexicographic ordering among the lists induced by the models
of µ and E (since for all other !0, ddD,GMIN(!

0
, {K

1

, . . . , Kn}) is a list of at most
k 0s, followed by 1s), ! is a model of 4dD,GMIN

µ (E). Subsequently, 4kmax
µ (E) |=

4dD,GMIN
µ (E).

Now, suppose that (
W
E) ^ µ is inconsistent. Then we have 4kmax

µ (E) ⌘ µ, so for
every model ! of µ and every base Ki of E we have dD(!, Ki) = 1. So for every
model ! of µ, ddD,GMIN(!, E) is (1, 1, . . . , 1), and 4dD,GMIN

µ (E) ⌘ µ ⌘ 4kmax
µ (E).

2

Proof of Proposition 16: In order to show that 4d,GMIN satisfies (IC0 - IC8) we
first show that the function which associates to each profile E the preorder d,GMIN

E

is a syncretic assignment, and conclude by Theorem 11 of [18]. Let us first state
two useful lemmata:

Definition 13 (�) Let v
1

and v

2

be two lists of integers. We note v

1

� v

2

the list of
integers obtained by sorting in increasing order the concatenation of v

1

and v

2

.

Lemma 5 Let v
1

, v

0
1

, v

2

, v

0
2

be four lists of integers sorted in increasing order. If
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v

1

lex v

0
1

and v

2

lex v

0
2

, then v

1

� v

2

lex v

0
1

� v

0
2

.

Proof of Lemma 5: Suppose that v
1

lex v

0
1

and v

2

lex v

0
2

, it is easy to show that:
v

1

� v

2

lex v

0
1

� v

2

and v

0
1

� v

2

lex v

0
1

� v

0
2

. Then by transitivity of lex, we get
v

1

� v

2

lex v

0
1

� v

0
2

.
2

Lemma 6 Let v
1

, v

0
1

, v

2

, v

0
2

be four lists of integers sorted in increasing order. If
v

1

lex v

0
1

and v

2

<lex v

0
2

, then v

1

� v

2

<lex v

0
1

� v

0
2

(where <lex designed the strict
relation associated to lex).

Proof of Lemma 6: Under the assumptions of the lemma, it is easy to show that:
v

1

� v

2

lex v

0
1

� v

2

and v

0
1

� v

2

<lex v

0
1

� v

0
2

. Then by transitivity of lex, we get
v

1

� v

2

<lex v

0
1

� v

0
2

.
2

Now let us check the conditions of syncretic assignements:

1. If ! |= E and !

0 |= E, then 8Ki 2 E, ! |= E and !

0 |= E, so dd,GMIN(!, E) =

(0, 0, . . . , 0) and dd,GMIN(!
0
, E) = (0, 0, . . . , 0), so ! 'd,GMIN

E !

0.
2. If ! |= E and !

0 6|= E, then dd,GMIN(!, E) = (0, 0, . . . , 0) and dd,GMIN(!
0
, E) 6=

(0, 0, . . . , 0), so ! <

d,GMIN

E !

0.
3. If E

1

⌘ E

2

, then d,GMIN

E
1

=d,GMIN

E
2

.
4. We want to show that 8! |= K9!0 |= K

0 such that !0 d,GMIN

{K,K0} !. We have that
d(!, K) = 0 and d(!, K

0
) = min!00|=K0

d(!,!

00
). Consider any !

0 |= K

0 such
that d(!,!0

) = d(!, K

0
). Then d(!

0
, K) = min!00|=K d(!

0
,!

00
)  d(!

0
,!), and

d(!

0
, K

0
) = 0. So dd,GMIN(!

0
, {K,K

0}) lex dd,GMIN(!, {K,K

0}). So by definition
!

0 d,GMIN

{K,K0} !.
5. We want to show that if dd,GMIN(!, E1

) lex dd,GMIN(!
0
, E

1

) and dd,GMIN(!, E2

)

lex dd,GMIN(!
0
, E

2

), then dd,GMIN(!, {E1

, E

2

}) lex dd,GMIN(!
0
, {E

1

, E

2

}). This is
a direct consequence of Lemma 5.

6. We want to show that if dd,GMIN(!, E1

) <lex dd,GMIN(!
0
, E

1

) and dd,GMIN(!, E2

)

lex dd,GMIN(!
0
, E

2

), then dd,GMIN(!, {E1

, E

2

}) <lex dd,GMIN(!
0
, {E

1

, E

2

}). This is
a direct consequence of Lemma 6.

So the function is a syncretic assignment, and by Theorem 11 of [18] this shows
that 4d,GMIN satisfies (IC0 - IC8).

(Disj): Direct consequence of Proposition 14 since 4d,GMIN
µ (E) |= �

k
max

µ (E).
(Card): Consider the following counter-example: P = {a, b}, E = {K

1

, K

2

, K

3

}
with K

1

= {¬a}, K
2

= {a^¬b} and K

3

= {(¬a^b)_(a^¬b)}. MAXCONS>(E)

contains two elements: M
1

= {¬a, (¬a^b)_(a^¬b)} and M

2

= {a^¬b, (¬a^
b) _ (a ^ ¬b)}. Clearly, #(M

1

) = #(M

2

). 4dH ,GMIN
µ (E) ⌘ a ^ ¬b is consistent

with M

2

but not with M

1

.
(Wmaj) and (Maj): Consider the following counter-example: P = {a, b}, E

1

=
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{a ^ b}, E
2

= {¬a ^ ¬b} and µ ⌘ b. Then, for any n � 1, 4d,GMIN
µ (E

1

t
E

2

t . . . t E

2| {z }
n

) has a single model ! = (a = 1; b = 1) (the first element

of dd,GMIN(!, E1

t E

2

t . . . t E

2| {z }
n

) is 0, so the distance is minimal, and ! is the

only world in this case). So 4d,GMIN
µ (E

1

t E

2

t . . . t E

2| {z }
n

) is not consistent with

4d,GMIN
µ (E

2

) which single model is !

0
= (a = 0, b = 1). Hence (Wmaj) (and

then (Maj)) is not satisfied.

2

Proof of Proposition 17: If
W
E

2

is consistent with the constraint µ, then for any
n > #(E

1

), no model of E
1

which is not a model of E
2

can be in [4d,GMIN
µ (E

1

t
E

2

t . . . t E

2| {z }
n

)] because the list dd,GMIN(!, E1

t E

2

t . . . t E

2| {z }
n

) contains at least n

zero when ! is a model of 4d,GMIN
µ (E

1

tE
2

t . . . t E

2| {z }
n

). Hence 9n 2 IN,4d,GMIN
µ (E

1

t

E

2

t . . . t E

2| {z }
n

) |= 4d,GMIN
µ (E

2

).

2

Proof of Proposition 18:

• 4d,GMIN is strategy-proof for ip if every base from the profile E is complete (i.e.,
each base has a unique model).

We first show that if a merging operator 4d,GMIN
µ is not strategy-proof for ip,

then it is not strategy-proof by erosion (i.e., when a manipulation is possible
by reporting a base which entails the actual one). Clearly, no such manipulation
is possible when each base from the profile is complete, so we can conclude
that 4d,GMIN

µ is not strategy-proof for ip, hence for the two other indexes as well
(4d,GMIN

µ satisfies (IC1)). Reductio ad absurdum. Suppose that there exists a pro-
file E = {K

2

, . . . , Kn}, an integrity constraint µ and two bases K and K

0 with
K

0 6|= K, such that

ip(K,4d,GMIN

µ ({K} t E) < ip(K,4d,GMIN

µ ({K 0} t E).

Equivalently:

#([K ^4d,GMIN
µ ({K} t E)])

#([4d,GMIN
µ ({K} t E)])

<

#([K ^4d,GMIN
µ ({K 0} t E)])

#([4d,GMIN
µ ({K 0} t E)])

.

We define K

00 by [K

00
] = [K ^K

0 ^4d,GMIN
µ ({K 0} t E)]. We show in the rest

of the proof that a manipulation can be achieved by reporting K

00 instead of K,
(hence a manipulation by erosion since K

00 |= K).
1. First, we show by reductio ad absurdum that K ^ 4d,GMIN

µ ({K 0} t E) |= K

0 .
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Let us suppose that 9! 6|= K

0 such that ! |= K ^ 4d,GMIN
µ ({K 0} t E). Since

! is a model of 4d,GMIN
µ ({K 0} t E), ! satisfies µ and a maximal number of

bases of {K 0} t E, say k bases. Since ! 6|= K

0, ! satisfies k bases of E.
So, ! satisfies k + 1 bases of {K} t E. Suppose that 9!0 6|= K such that
!

0 |= 4d,GMIN
µ ({K}tE). Then !

0 satisfies µ and satisfies at least k+1 bases of
{K}tE. Since !0 6|= K, ! satisfies at least k+ 1 bases of E, so at least k+ 1

bases of {K 0}tE. This contradicts the fact that ! is a model of 4d,GMIN
µ ({K 0}t

E) by satisfying a maximal number k of bases of {K 0} t E. So every model
of 4d,GMIN

µ ({K} t E) is a model of K, and ip(K,4d,GMIN
µ ({K} t E)) = 1 is

maximal, which contradicts the assumption.
2. Second, we have [K

00
] 6= ;, since otherwise there would be no model of K in

4d,GMIN
µ ({K 0} t E), which contradicts the manipulability of E for K 0.

3. Let us now consider a model !
1

of K ^ K

0 ^ 4d,GMIN
µ ({K 0} t E). In order

to simplify the notations, we note d instead of dd,GMIN in this proof. We have
!

1

|= µ and d(!

1

, {K 00
, K

2

, . . . , Kn}) = d(!

1

, {K 0
, K

2

, . . . , Kn}), because
d(!

1

, K

00
) = d(!

1

, K

0
) = 0. Moreover:

d(!

1

, {K 0
, K

2

, . . . , Kn}) = min({d(!, {K 0
, K

2

, . . . , Kn}) | ! |= µ},lex).

So:

d(!

1

, {K 00
, K

2

, . . . , Kn}) = min({d(!, {K 0
, K

2

, . . . , Kn}) | ! |= µ},lex).

(A.5)
and

min({d(!, {K 00
, K

2

, . . . , Kn}) | ! |= µ},lex) 
min({d(!, {K 0

, K

2

, . . . , Kn}) | ! |= µ},lex).

Besides, since K

00 |= K

0, we have that 8! 2 W , d(!, K

0
)  d(!, K

00
). So

8! 2 W , d(!, {K 0
, K

2

, . . . , Kn}) lex d(!, {K 00
, K

2

, . . . , Kn}), and

min({!, {K 0
, K

2

, . . . , Kn}) | ! |= µ},lex) 
min({!, {K 00

, K

2

, . . . , Kn}) | ! |= µ},lex).

With (A.5), we get:

min({d(!, {K 0
, K

2

, . . . , Kn}) | ! |= µ},lex) =

min({d(!, {K 00
, K

2

, . . . , Kn}) | ! |= µ},lex). (A.6)

4. Consider now a model !
1

of K ^ 4d,GMIN
µ ({K 0} t E). We have !

1

|= µ and
!

1

|= K

0 from point 1. of the proof. Then !

1

|= K

00, and since d(!

1

, K

0
) =

d(!

1

, K

00
) = 0, we have d(!

1

, {K 00
, K

2

, . . . , Kn}) = d(!

1

, {K 0
, K

2

, . . . , Kn}).
Furthermore, since:

d(!

1

, {K 0
, K

2

, . . . , Kn}) = min({d(!, {K 0
, K

2

, . . . , Kn}) | ! |= µ},lex),
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(A.6) gives that:

d(!

1

, {K 00
, K

2

, . . . , Kn}) = min({d(!, {K 00
, K

2

, . . . , Kn}) | ! |= µ},lex)).

So !

1

is a model of 4d,GMIN
µ ({K 00} t E) and we have:

#([K ^4d,GMIN

µ ({K 0} t E)])  #([K ^4d,GMIN

µ ({K 00} t E)]).

5. Finally, if we consider !
1

|= ¬K ^4d,GMIN
µ ({K 00} t E), then !

1

|= µ and:

d(!

1

, {K 00
, K

2

, . . . , Kn}) = min({d(!, {K 00
, K

2

, . . . , Kn}) | ! |= µ},lex).

Since K

00 |= K

0, we have that d(!
1

, K

0
)  d(!

1

, K

00
). So we get:

d(!

1

, {K 0
, K

2

, . . . , Kn}) lex d(!

1

, {K 00
, K

2

, . . . , Kn}).

Hence:

d(!

1

, {K 0
, K

2

, . . . , Kn}) lex min({d(!, {K 00
, K

2

, . . . , Kn}) | ! |= µ},lex).

From (A.6), we get:

d(!

1

, {K 0
, K

2

, . . . , Kn}) lex min({d(!, {K 0
, K

2

, . . . , Kn}) | ! |= µ},lex).

So we can deduce that:

d(!

1

, {K 0
, K

2

, . . . , Kn}) = min({d(!, {K 0
, K

2

, . . . , Kn}) | ! |= µ},lex)

and !

1

is a model of of 4d,GMIN
µ ({K 0} t E) and:

#([¬K ^4d,GMIN

µ ({K 00} t E)])  #([¬K ^4d,GMIN

µ ({K 0} t E)]).

Then,

#([K ^4d,GMIN
µ ({K 0} t E)])

#([4d,GMIN
µ ({K 0} t E)])

 #([K ^4d,GMIN
µ ({K 00} t E)])

#([4d,GMIN
µ ({K 00} t E)])

.

So,
ip(K,4d,GMIN

µ ({K 0} t E)  ip(K,4d,GMIN

µ ({K 00} t E).

And finally,

ip(K,4d,GMIN

µ ({K} t E) < ip(K,4d,GMIN

µ ({K 00} t E),

which concludes the proof.
• 4d,GMIN is strategy-proof for the indexes idw and ids if every base from the profile

E is complete, or if #(E) = 2 and µ ⌘ >.
We know that a merging operator satisfying (IC1) and strategy-proof for ip is

also strategy-proof for the drastic indexes idw and ids . Here, with the first point of
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the proof, we know that 4d,GMIN is strategy-proof for ip if every base of the profile
is complete, and then the result for idw and ids follows (4d,GMIN satisfies (IC1)).

The second case is when #(E) = 2 and µ ⌘ >. The result under these
assumptions is a direct consequence of the following lemma:

Lemma 7 4d,GMIN

> ({K
1

, K

2

}) ^K

1

is consistent.
Proof of Lemma 7: Reductio ad absurdum. Let us suppose that 4d,GMIN

> ({K
1

, K

2

})
is inconsistent with K

1

. We have that:

9!0 |= ¬K
1

, 8! |= K

1

, d(!, {K
1

, K

2

}) >lex d(!

0
, {K

1

, K

2

}).

Since 8! |= K

1

, d(!, K

1

) = 0, we get:

9!0 |= ¬K
1

, 8! |= K

1

, (0, d(!, K

2

)) >lex dd,GMIN(!
0
, {K

1

, K

2

}). (A.7)

As !

0 |= ¬K
1

, we have d(!

0
, K

1

) 6= 0; hence for Inequation (A.7) to hold we
must have d(!

0
, K

2

) = 0. So

9!0 |= ¬K
1

, 8! |= K

1

, (0, d(!, K

2

)) >lex (0, d(!

0
, K

1

)).

In particular, if we consider !
1

|= K

1

such that d(!0
, K

1

) = d(!

0
,!

1

), we get:

(0, d(!

1

, K

2

)) >lex (0, d(!

0
,!

1

)).

This requires that d(!
1

, K

2

) > d(!

0
,!

1

) with !

0 |= K

2

, but this is impossible.
Contradiction.

2

Let us now prove the main proposition:
idw : Since 4d,GMIN

> ({K
1

, K

2

}) ^ K

1

is consistent (Lemma 7), we always have
idw(K1

,4d,GMIN

> ({K
1

, K

2

})) = 1, so no manipulation is possible (idw is maxi-
mal).

ids : Reductio ad absurdum. If 4d,GMIN

> is not strategy-proof, then we can find K

0
1

such that ids(K1

,4d,GMIN

> ({K
1

, K

2

})) < ids(K1

,4d,GMIN

> ({K 0
1

, K

2

})). For the
strong drastic index, this means exactly that ids(K1

,4d,GMIN

> ({K
1

, K

2

})) = 0

and ids(K1

, 4d,GMIN

> ({K 0
1

, K

2

})) = 1. So we have:

4d,GMIN

> ({K
1

, K

2

}) 6|= K

1

(A.8)

4d,GMIN

> ({K 0
1

, K

2

}) |= K

1

. (A.9)

Since 4d,GMIN

> ({K 0
1

, K

2

}) ^K

2

is consistent (Lemma 7), we can find !

2

|=
K

2

such that !
2

|= 4d,GMIN

> ({K 0
1

, K

2

}). With (A.9), we can conclude that !
2

|=
K

1

as well.
Since !

2

|= K

1

^ K

2

, then d(!

2

, {K
1

, K

2

}) = (0, 0). So for every model
! of 4d,GMIN

> ({K
1

, K

2

}), we have d(!, {K
1

, K

2

}) = (0, 0). This implies that
4d,GMIN

> ({K
1

, K

2

}) ⌘ K

1

^K

2

. This contradicts (A.8), so no manipulation is
possible.
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2

Proof of Proposition 19:

• 4dD,GMIN is strategy-proof for the three indexes idw , ip and ids . This is a con-
sequence of Proposition 15 (4dD,GMIN

= �

k
max) and Proposition 3 (�k

max is
strategy-proof for the three indexes).

• 4dH ,GMIN is strategy-proof for ip if and only if every base from the profile E is
complete.
– If every base from the profile E is complete, from Proposition 18, it comes that

4dH ,GMIN is strategy-proof for ip.
– As to the converse, the following example shows that 4dH ,GMIN

µ is not strategy-
proof for ip, even when µ = > and two bases are to be merged. Let us consider
[K

1

] = {0000, 0111, 1011, 1101, 1110}, [K
2

] = {1000, 0100, 0010, 0001}, and
µ = >. Then [4dH ,GMIN

> ({K
1

, K

2

}] = {0000, 0001, 0010, 0100, 1000}, and
ip(K1

,4dH ,GMIN

> ({K
1

, K

2

})) = 1

5

.

If agent 1 gives K

0
1

with [K

0
1

] = {0111, 1011, 1101, 1110} instead of K
1

,
then [4dH ,GMIN

> ({K 0
1

, K

2

})] = {0001, 0010, 0100, 0111, 1000, 1011, 1101, 1110}
and ip(K1

,4dH ,GMIN

> ({K 0
1

, K

2

})) = 1

2

, showing the manipulability.
• 4dH ,GMIN

µ is strategy-proof for idw and ids if and only if every base from the profile
E is complete, or if #(E) = 2 and µ ⌘ >.
– If every base from the profile E is complete or if #(E) = 2 and µ ⌘ >, from

Proposition 18, it comes that 4dH ,GMIN is strategy-proof for the drastic indexes
idw and ids .

– As to the converse, by case analysis:
idw : Suppose that µ 6⌘ > and #(E) = 2. Then consider P = {a, b}, [K

1

] =

{00, 01}, [K
2

] = {11}, and µ = a _ ¬b. We have [4dH ,GMIN
µ ({K

1

, K

2

}] =
{11}, and idw(K1

,4dH ,GMIN
µ ({K

1

, K

2

})) = 0. If agent 1 gives [K 0
1

] = {00}
instead of K

1

, then [4dH ,GMIN
µ ({K 0

1

, K

2

})] = {00, 11} and we have idw(K1

,

4dH ,GMIN
µ ({K 0

1

, K

2

})) = 1.

Suppose now that µ ⌘ > and #(E) 6= 2. Then consider [K
1

] = {000, 001},
[K

2

] = {100, 111}, [K
3

] = {011} and µ = >. We obtain [4dH ,GMIN

> ({K
1

, K

2

,

K

3

}] = {011}, and idw(K1

,4dH ,GMIN

> ({K
1

, K

2

, K

3

})) = 0. If agent 1 gives
K

0
1

with [K

0
1

] = {000} instead of K

1

, then [4dH ,GMIN

> ({K 0
1

, K

2

, K

3

})] =

{000, 011} and idw(K1

, 4dH ,GMIN

> ({K 0
1

, K

2

, K

3

})) = 1.

ids : Suppose that µ 6⌘ > and #(E) = 2, and consider P = {a, b, c}, [K
1

] =

{000, 011}, [K
2

] = {001, 111}, and µ = a _ b _ ¬c. Then [4dH ,GMIN
µ ({K

1

,

K

2

}] = {000, 011, 111}, and ids(K1

,4dH ,GMIN
µ ({K

1

, K

2

})) = 0. If agent 1
gives [K 0

1

] = {000} instead of K
1

, then [4dH ,GMIN
µ ({K 0

1

, K

2

})] = {000} and
ids(K1

,4dH ,GMIN
µ ({K 0

1

, K

2

})) = 1.

Finally, suppose µ ⌘ > and #(E) 6= 2; consider [K

1

] = {000, 011},
[K

2

] = {000, 111}, [K
3

] = {001, 111} and µ = >. We have [4dH ,GMIN

> ({K
1

,

K

2

, K

3

}] = {000, 111}, and ids(K1

,4dH ,GMIN

> ({K
1

, K

2

, K

3

})) = 0. If agent
1 gives K 0

1

with [K

0
1

] = {000} instead of K
1

, then the result is [4dH ,GMIN

> ({K 0
1

,
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K

2

, K

3

})] = {000} and ids(K1

, 4dH ,GMIN

> ({K 0
1

, K

2

, K

3

})) = 1.

2

Proof of Proposition 20: Immediate from Theorem 2(1) from [16] and the fact that
each 4d,GMIN operator coincides with the DA2 merging operator 4d,MAX,GMIN, where
each base consists of a single formula.

2

Proof of Proposition 21:

• Immediate from Proposition 2 and Proposition 15.
• Membership comes directly from Proposition 20. As to hardness, we consider the

following polynomial reduction f from MAX-SAT-ASGodd to MERGE(4dH ,GMIN
).

Let ⌃ be a propositional formula such that V ar(⌃) = {x
1

, . . . , xn}. Let f(⌃) =

hE = {Ki = {xi ^
2(i�1)^

j=1

newj} | i 2 1, . . . , n}, µ = ⌃ ^
2(n�1)^

j=1

¬newj,↵ = xni

where each newj (j 2 1, . . . , 2n�2) is a new variable (not occurring in ⌃.) Now,
for every model ! of µ and for every i 2 1, . . . , n� 1, we have

dH(!, Ki) < dH(!, Ki+1

).

This shows that the lists ddH ,GMIN(!, E) obtained by sorting the set {dH(!, Ki) |
i 2 1, . . . , n} in increasing order are always sorted in the same way (indepen-
dently of !): the first element is dH(!, K1

), the second one is dH(!, K2

), etc.
Furthermore, whenever a model !

1

of µ is strictly lower than a model !
2

of µ
with respect to the lexicographic ordering 4 induced by x

1

< x

2

< . . . < xn,
then ddH ,GMIN(!1

, E) is strictly greater than ddH ,GMIN(!2

, E) (with respect to lex).
Since the models of µ are totally ordered with respect to 4, exactly one model
of µ is minimal with respect to the preference ordering induced by E: this is the
model of µ that is maximal with respect to 4. Accordingly, xn is true in this
model if and only if 4dH ,GMIN

µ (E) |= ↵ holds. This concludes the proof.

2

Proposition 22 Let k be an integer � 0, E = {K
1

, . . . , Kn} be a profile, and µ

be an integrity constraint. The alternative k-quota merging operator, denoted d4k,
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is defined in a model-theoretic way as:

[

d4k
µ(E)] =

8
>>>>><

>>>>>:

{! 2 [µ] | 8Ki 2 E ! |= Ki} if non empty, else

{! 2 [µ] | #({Ki 2 E | ! |= Ki}) � k} if non empty, else

{! 2 [µ]}

d4k operators satisfy (IC0), (IC1), (IC2), (IC3), (IC4), (IC7) and (IC8). They do
not satisfy (IC5), (IC6), (Disj) and (Maj) in the general case.

Proof of Proposition 22:

(IC0), (IC1), (IC2), (IC3) Obvious from the definition of d4k.
(IC4) We have to show that if K

1

|= µ, K
2

|= µ, and d4k
µ({K1

, K

2

}) ^K

1

6|= ?,
then d4k

µ({K1

, K

2

}) ^K

2

6|= ?.
Let E = {K

1

, K

2

}. Assume that K
1

|= µ and K

2

|= µ. If K

1

^ K

2

^ µ is
consistent or {! 2 [µ] | #({Ki 2 E | ! |= Ki}) � k} is not empty, then the
definition of d4k is the same as the one of 4k, so from Proposition 6, (IC4)
holds. In the remaining case, i.e., if K

1

^K

2

^ µ is not consistent and {! 2 [µ] |
#({Ki 2 E | ! |= Ki}) � k} is empty, then d4k

µ({K1

, K

2

}) ⌘ µ. In this case,
as K

2

|= µ, d4k
µ({K1

, K

2

}) ^K

2

is consistent and (IC4) is satisfied.
(IC5) If k = 2 and E

1

= {K
1

}, E
2

= {K
2

}, then we have d42

µ(E1

) =

d42

µ(E2

) ⌘
µ. But d42

µ(E1

t E

2

) ⌘ K

1

^ K

2

^ µ if consistent, and d42

µ(E1

) ^ d42

µ(E2

)

⌘ µ 6|= K

1

^K

2

^ µ.
(IC6) The counter-example used in Proposition 6 to show that 4k dos not satisfy

(IC6) still applies here.
(IC7) We have to show that d4k

µ
1

(E) ^ µ

2

|= \4k
µ
1

^µ
2

(E).
If

V
E ^ µ

1

is consistent or {! 2 [µ

1

] | #({Ki 2 E | ! |= Ki}) � k} is not
empty, then the definition of d4k is the same as the one of 4k, so from Proposition
6, (IC7) holds. In the remaining case, i.e., if

V
E ^ µ

1

is not consistent and
{! 2 [µ

1

] | #({Ki 2 E | ! |= Ki}) � k} is empty, then d4k
µ
1

(E) ⌘ µ

1

. In this
case, d4k

µ
1

(E)^ µ

2

⌘ µ

1

^ µ

2

. As
V
E ^ µ

1

is not consistent,
V
E ^ (µ

1

^ µ

2

) is
not consistent as well.

Now, since {! 2 [µ

1

] | #({Ki 2 E | ! |= Ki}) � k} is empty, there is no
model ! of µ

1

^ µ

2

such that #({Ki 2 E | ! |= Ki}) � k} so {! 2 [µ

1

^ µ

2

] |
#({Ki 2 E | ! |= Ki}) � k} is also empty.

Therefore \4k
µ
1

^µ
2

(E) ⌘ µ

1

^ µ

2

and d4k
µ
1

(E) ^ µ

2

|= \4k
µ
1

^µ
2

(E), showing
that (IC7) is satisfied.

(IC8) We have to show that if d4k
µ
1

(E) ^ µ

2

is consistent, then \4k
µ
1

^µ
2

(E) |=
d4k
µ
1

(E) ^ µ

2

. We consider two cases:
(1) µ

1

^ µ

2

^V
E is consistent. Then µ

1

^V
E is consistent as well and we have

\4k
µ
1

^µ
2

(E) ⌘ µ

1

^ µ

2

^ V
E. Hence \4k

µ
1

^µ
2

(E) |= d4k
µ
1

(E) ^ µ

2

, and (IC8) is
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satisfied.
(2) µ

1

^ µ

2

^ V
E is inconsistent. In this situation, two cases are possible:

• {! 2 [µ

1

^ µ

2

] | #({Ki 2 E | ! |= Ki}) � k} is not empty.
Then [

\4k
µ
1

^µ
2

(E)] = {! 2 [µ

1

^ µ

2

] | #({Ki 2 E | ! |= Ki}) � k}.
Suppose that µ

1

^V
E is consistent. Then d4k

µ
1

(E) ⌘ µ

1

^V
E. As µ

1

^µ

2

^
V
E is inconsistent, we deduce that d4k

µ
1

(E) ^ µ

2

is also inconsistent, which
contradicts the assumption. So µ

1

^ V
E is inconsistent.

As {! 2 [µ

1

^ µ

2

] | #({Ki 2 E | ! |= Ki}) � k} ✓ {! 2 [µ

1

] | #({Ki 2
E | ! |= Ki}) � k}, we know that {! 2 [µ

1

] | #({Ki 2 E | ! |= Ki}) � k}
is not empty. Since [

d4k
µ
1

(E)] = {! 2 [µ

1

] | #({Ki 2 E | ! |= Ki}) � k},
we have:

\4k
µ
1

^µ
2

(E) |= d4k
µ
1

(E) ^ µ

2

and (IC8) holds.

• {! 2 [µ

1

^ µ

2

] | #({Ki 2 E | ! |= Ki}) � k} is empty.
Then [

\4k
µ
1

^µ
2

(E)] = [µ

1

^ µ

2

]. By assumption, d4k
µ
1

(E) ^ µ

2

is consistent,
so we can deduce that d4k

µ
1

(E) 6⌘ µ

1

^ V
E and [

d4k
µ
1

(E)] 6= {! 2 [µ

1

] |
#({Ki 2 E | ! |= Ki}) � k} = ;. This shows that d4k

µ
1

(E) ⌘ µ

1

.
Obviously,

\4k
µ
1

^µ
2

(E) |= d4k
µ
1

(E) ^ µ

2

and (IC8) holds also in this case.

(Disj) Consider the following counter-example: P = {a, b}, E = {K
1

, K

2

} with
K

1

= {a}, K
2

= {b}, k = 2, µ = ¬a. We have d4k
µ(E) ⌘ ¬a. Clearly, while

W
E is consistent with µ, we do not have d4k

µ(E) |= W
E.

(Maj) Consider the same counter-example as the one given in the same item of the
proof of Proposition 6.

2
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