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Abstract
Argumentation is a process of evaluating and compar-
ing a set of arguments. A way to compare them consists
in using a ranking-based semantics which rank-order
arguments from the most to the least acceptable ones.
Recently, a number of such semantics have been pro-
posed independently, often associated with some desir-
able properties. However, there is no comparative study
which takes a broader perspective. This is what we pro-
pose in this work. We provide a general comparison of
all these semantics with respect to the proposed proper-
ties. That allows to underline the differences of behavior
between the existing semantics.

Introduction
Argumentation consists in reasoning with conflicting infor-
mation based on the exchange and evaluation of interact-
ing arguments. The most popularly way to represent argu-
mentation process was proposed by Dung (1995) with argu-
mentation frameworks modelized by binary graphs, where
the nodes represent the arguments, and the edges repre-
sent the attacks between them. From these argumentation
frameworks, several semantics indicating which sets of ar-
guments, called extensions, are mutually compatible were
proposed (see (Baroni, Caminada, and Giacomin 2011) for
an overview). However, for applications with a big number
of arguments, it can be problematic to have only two levels
of evaluations (arguments are either accepted or rejected).
For instance, such a limitation can be questionable when
using argumentation for debate platforms on the web (see
(Leite and Martins 2011) for such a discussion).

In order to fix these problems, a solution consists in us-
ing semantics that distinguish arguments not with the clas-
sical accepted/rejected evaluations, but with a large num-
ber of levels of acceptability. A lot of these semantics,
called ranking-based semantics, were proposed in recent
years (Amgoud and Ben-Naim 2013; Cayrol and Lagasquie-
Schiex 2005; Leite and Martins 2011; Matt and Toni 2008;
Gabbay 2012) with, for each semantics, different behaviour
and logical properties. However, all these semantics have
never been compared between them.

This is what we propose in this work. We study the exist-
ing ranking-based semantics in the literature (focusing on
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the semantics that return a unique ranking between argu-
ments) in the light of the proposed properties. That allows
us to underline the differences of behavior between those
semantics, and to propose a better reading of the different
choices one has on this matter.

The paper is organized as follows. Section 2 presents
the relevant background regarding abstract argumentation
and ranking-based semantics. Section 3 presents the differ-
ent properties that have been introduced in the literature,
whereas Section 4 formally introduces the existing ranking-
based semantics. Note that due to space constraints, we can
not recall all the details and justifications of semantics and
properties of the literature, but the reader can find them in
the corresponding papers. In Section 5 we discuss the dif-
ferent properties and compare the semantics, and Section 6
concludes.

Preliminaries
In this section, we start by briefly recalling what is a Dung’s
abstract argumentation framework (Dung 1995), where the
exact structure of arguments is unspecified.

Definition 1. An argumentation framework (AF) is a pair
F = 〈A,R〉 with A a set of arguments and R a binary re-
lation on A, i.e. R ⊆ A × A, called the attack relation. A
set of arguments S ⊆ A attacks an argument b ∈ A, if there
exists a ∈ S, such that (a, b) ∈ R. We note Arg(F ) = A.

Let AF be the set of all argumentation frameworks. For
two AF F = 〈A,R〉 and G = 〈A′, R′〉, we define the union
F ∪G = 〈A ∪A′, R ∪R′〉.
Example 1. Let F = 〈A,R〉 with A = {a, b, c, d, e} and
R = {(a, e), (b, a), (b, c), (c, e), (d, a), (e, d)}.

d a b

e c

We can now introduce some useful notions in order to
formalize properties of argumentation frameworks.

Definition 2. Let F = 〈A,R〉 be an AF and a, b ∈ A.
A path P from b to a, noted P (b, a), is a sequence s =
〈a0, . . . , an〉 of arguments such that a0 = a, an = b
and ∀i ≤ n, (ai, ai−1) ∈ R. We denote by lP = n the



length of P. A defender (resp. attacker) of a is an argu-
ment situated at the beginning of an even-length (resp. odd-
length) path. We denote the multiset of defenders and at-
tackers of a by R+

n (a) = {b | ∃P (b, a) with lP ∈ 2N} and
R−n (a) = {b | ∃P (b, a)with lP ∈ 2N+1} respectively. The
direct attackers of a are arguments in R−1 (a). An argument
a is defended if R+

n (a) 6= ∅.
A defense root (resp. attack root) is a non-attacked de-
fender (resp. attacker). We denote the multiset of de-
fense roots and attack roots of a by BR+

n (a) = {b ∈
R+
n (a) | |R−1 (b)| = 0} and BR−n (a) = {b ∈

R−n (a) | |R−1 (b)| = 0} respectively. A path from b to a is
a defense branch (resp. attack branch) if b is a defense
(resp. attack) root of a. Let us note BR+(a) =

⋃
nBR

+
n (a)

and BR−(a) =
⋃
nBR

−
n (a).

The connected components of an AF are the set of largest
subgraphs of AF, denoted by cc(AF ), where two arguments
are in the same component of AF if and only if there is some
path (ignoring the direction of the edges) between them.

In Dung’s framework (Dung 1995), the acceptability of
an argument depends on its membership to some sets, called
extensions. Another way to select a set of acceptable argu-
ments is to rank arguments from the most to the least ac-
ceptable ones. Ranking-based semantics aim at determining
such a ranking between arguments.

Definition 3. A ranking-based semantics σ associates to
any argumentation framework AF = 〈A,R〉 a ranking �σAF
on A, where�σAF is a preorder (a reflexive and transitive re-
lation) on A. a �σAF b means that a is at least as acceptable
as b.

When there is no ambiguity about the argumentation
framework in question, we will use �σ instead of �σAF .

Finally, we need to introduce the notion of lexicographical
order in order to define some ranking-based semantics.

Definition 4. A lexicographical order between two vectors
of real number V = 〈V1, . . . , Vn〉 and V ′ = 〈V ′1 , . . . , V ′n〉,
is defined as V �lex V ′ iff ∃i ≤ n s.t. Vi ≥ V ′i and ∀j ∈
{1, 2 . . . , i− 1}, Vj = V ′j .

Properties
Let us recall the logical properties proposed in the litera-
ture. Unless stated explicitly, all the properties are defined
for a ranking-based semantics σ, ∀AF ∈ AF and ∀a, b ∈
Arg(AF ).

Definition 5. An isomorphism γ between two argumenta-
tion frameworks AF = 〈A,R〉 and AF’ = 〈A′, R′〉 is a bijec-
tive function γ : A→ A′ such that ∀x, y ∈ A, (x, y) ∈ R iff
(γ(x), γ(y)) ∈ R′. With a slight abuse of notation, we will
note AF ′ = γ(AF ).

Abstraction. The ranking on A should be defined only on
the basis of the attacks between arguments.
(Abs) Let AF,AF ′ ∈ AF. For any isomorphism γ s.t.
AF ′ = γ(AF ), we have a �σAF b iff γ(a) �σAF ′ γ(b)

Independance. The ranking between two arguments a and
b should be independent of any argument that is neither
connected to a nor to b.

(In) ∀AF ′ ∈ cc(AF ), ∀a, b ∈ Arg(AF ′),
a �σAF ′ b⇒ a �σAF b

We may have expectations regarding the best and worst ar-
guments that we may find in an AF:
Void Precedence. A non-attacked argument is ranked
strictly higher than any attacked argument.
(VP) R−1 (a) = ∅ and R−1 (b) 6= ∅ ⇒ a �σ b

Self-Contradiction. A self-attacking argument is ranked
lower than any argument that does not attack itself.
(SC) (a, a) /∈ R and (b, b) ∈ R ⇒ a �σ b

The following local properties are concerned with the direct
attackers, or defenders, of arguments:
Cardinality Precedence. The greater the number of direct
attackers for an argument, the weaker the level of accept-
ability of this argument.
(CP) |R−1 (a)| < |R

−
1 (b)| ⇒ a �σ b

Quality Precedence. The greater the acceptability of one
direct attacker for an argument, the weaker the level of
acceptability of this argument.
(QP) ∃c ∈ R−1 (b) s.t. ∀d ∈ R−1 (a), c �σ d⇒ a �σ b

Before defining the next properties, we need to introduce
a relation that compares sets of arguments on the basis of
their rankings (Amgoud and Ben-Naim 2013):

Definition 6. Let �S be a ranking on a set of arguments A.
For any S1, S2 ⊆ A, S1 �S S2 is a group comparison iff
there exists an injective mapping f from S2 to S1 such that
∀a ∈ S2, f(a) � a. And S1 �S S2 is a strict group compar-
ison iff S1 �S S2 and (|S2| < |S1| or ∃a ∈ S2, f(a) � a).
Counter-Transitivity. If the direct attackers of b are at least
as numerous and acceptable as those of a, then a is at least
as acceptable as b.
(CT) R−1 (b) �S R

−
1 (a)⇒ a �σ b

Strict Counter-Transitivity. If CT is satsified and either
the direct attackers of b are strictly more numerous or
acceptable than those of a, then a is strictly more acceptable
than b.
(SCT) R−1 (b) �S R

−
1 (a)⇒ a �σ b

Defense Precedence. For two arguments with the same
number of direct attackers, a defended argument is ranked
higher than a non-defended argument.
(DP) |R−1 (a)| = |R

−
1 (b)|, R

+
2 (a) 6= ∅ and R+

2 (b) = ∅
⇒ a �σ b

Definition 7. Let AF = 〈A,R〉 and a ∈ A. The defense of
a is simple iff every defender of a attacks exactly one direct
attacker of a. The defense of a is distributed iff every direct
attacker of a is attacked by at most one argument.

Distributed-Defense Precedence. The best defense is when
each defender attacks a distinct attacker.
(DDP) |R−1 (a)| = |R

−
1 (b)| and |R+

2 (a)| = |R
+
2 (b)|, if the

defense of a is simple and distributed and the defense of b



is simple but not distributed, then a �σ b

The following properties check if some change in an AF
can improve or degrade the ranking of one argument. These
properties have been proposed informally by Cayrol and
Lagasquie-Schiex (2005), in the context of their semantics.
We propose a formalization that generalize them for any ar-
gumentation frameworks. We first define the addition of a
defense/attack branch to an argument.
Definition 8. Let AF = 〈A,R〉, a ∈ A. The defense
branch added to a, denoted P+(a) = 〈A′, R′〉, with
A ∩ A′ = {a}, is the sequence 〈x0, . . . , xn〉 with x0 = a,
x1, . . . , xn ∈ A′, n ∈ 2N such that ∀i ≤ n, (xi, xi−1) ∈
R′. The attack branch added to a, denoted P−(a) is de-
fined similarly except that the sequence is of odd length (i.e.
n ∈ 2N+ 1).

The following properties are defined ∀AF,AF γ ∈ AF
such that exists an isomorphism γ with AF γ = γ(AF ), and
∀a ∈ Arg(AF ). We use AF γ as a clone of AF .
Strict addition of Defense Branch. Adding a defense
branch to any argument improves its ranking.
(⊕DB) AF ∪AF γ ∪ P+(γ(a))⇒ γ(a) �σ a

Addition of Defense Branch. It could make sense to
treat differently non-attacked arguments. So in (Cayrol
and Lagasquie-Schiex 2005), this property is defined in a
more specific way: adding a defense branch to any attacked
argument improves its ranking.
(+DB) AF ∪AF γ ∪P+(γ(a)), |R−1 (a)| 6= 0⇒ γ(a) �σ a

Increase of Attack branch. Increasing the length of an
attack branch of an argument improves its ranking.
(↑AB) b ∈ BR−(a), AF ∪AF γ ∪ P+(γ(b))⇒ γ(a) �σ a

Addition of Attack Branch. Adding an attack branch to
any argument degrades its ranking.
(+AB) AF ∪AF γ ∪ P−(γ(a))⇒ a �σ γ(a)

Increase of Defense branch. Increasing the length of a
defense branch of an argument degrades its ranking.
(↑DB) b ∈ BR+(a), AF ∪AF γ ∪ P+(γ(b))⇒ a �σ γ(a)

One can find the properties Abs, In, VP, DP, CT, SCT, CP,
QP and DDP in (Amgoud and Ben-Naim 2013), the proper-
ties In, VP and SC in (Matt and Toni 2008) and the property
VP in (Cayrol and Lagasquie-Schiex 2005).

To this set of properties from the literature we want to
add some other important properties.
Total. A total relation between arguments is returned.
(Tot) a �σ b or b �σ a

The next property states that all the non-attacked argu-
ments should have the same ranking.
Non-attacked Equivalence. All the non-attacked argument
have the same rank.
(NaE) R−1 (a) = ∅ and R

−
1 (b) = ∅ ⇒ a �σ b and b �σ a

The last property describes the behavior adopted by a
semantics concerning the notion of defense, and can be
viewed as some kind of compatibility with usual Dung’s

semantics. The idea is that a defended argument is always
better than an attacked argument.
Attack vs Full defense. An argument without any attack
branch is ranked higher than an argument only attacked by
one non-attacked argument.
(AvsFD) AF is acyclic, |BR−(a)| = 0, |R−1 (b)| = 1 and
|R+

2 (b)| = 0⇒ a �σ b

Let us now check the incompatibility between pairs of
properties. An incompatibility between CP and QP has al-
ready been proved by Amgoud and Ben-Naim (2013)1.
Proposition 1. For every ranking-based semantics, the fol-
lowing pairs of properties are not compatible :
• CP and AvsFD
• CP and +DB
• VP and ⊕DB

Existing Ranking-based Semantics
Categoriser
Besnard and Hunter (2001) propose a categoriser function
which assigns a value to each argument, given the value of
its direct attackers.
Definition 9 (Besnard and Hunter 2001). The categoriser
function Cat : A→]0, 1] is defined as:

Cat(a) =

{
1 if R−1 (a) = ∅

1
1+

∑
c∈R−1 (a)

Cat(c) otherwise

Definition 10. The ranking-based semantics Categoriser
associates to any AF = 〈A,R〉 a ranking �Cat

AF on A such
that ∀a, b ∈ A, a �Cat

AF b iff Cat(a) ≥ Cat(b).
Example 1 (continued). Cat(a) ≈ 0.38 , Cat(b) = 1 ,
Cat(c) = 0.5, Cat(d) ≈ 0.65 and Cat(e) ≈ 0.53 . So we
obtain the ranking : b �Cat d �Cat e �Cat c �Cat a.

This semantics take into account only the value of the di-
rect attackers to compute the strength of an argument. This
is why the argument e in the previous example, which is at-
tacked twice but by arguments that are attacked by a not-
attacked argument, is ranked higher than the argument c,
which is attacked just once, but by a stronger argument.
Proposition 2. The ranking-based semantics Categoriser
satisfies2 Abs, In, VP, DP, CT, SCT, ↑AB, ↑DB, +AB, Tot and
NaE. The other properties are not satisfied.

Social Abstract Argumentation Framework
Leite and Martins (2011) introduce an extension of Dung’s
abstract argumentation frameworks that include social vot-
ing on the arguments: the Social Abstract Argumentation
Frameworks (SAF). They also propose a family of semantics
where a model is a solution to the equation system3 with one

1The Proofs of all the propositions are provided in the appendix
file on the AAAI submission system.

2The properties Abs, In, VP, DP, CT, SCT have already been
checked by Pu et al. (2014).

3An equational approach was also proposed by Gabbay (2012).
This method returns multiple solutions, and thus several rankings
for one AF. This is why we do not consider this method in this
paper.



equation for each argument, based on its social support and
its direct attackers. In order to compare SAFs with the exist-
ing ranking-based semantics, we chose to ignore the social
support of arguments by giving them the same value, and to
only focus on the attacks.
Definition 11. Let F = 〈A,R〉 be an AF and S =
〈L, τ,f,g,¬〉 be a (well-behaved) SAF semantic. The to-
tal mapping MS : A → L is a social model of F under
semantics S such that ∀a ∈ A:

MS(a) = τ(a)f ¬g {M(ai) : ai ∈ R−1 (a)}, where

• L is a totally ordered set with top > and bottom ⊥ ele-
ments, containing all possible valuations of an argument;

• τ : A → L is an attenuation factor. τ is monotonic w.r.t.
the first argument and antimonotonic w.r.t the second ar-
gument;

• f : L×L→ L combines the initial score with the score of
direct attackers. f is continuous, commutative, associa-
tive, monotonic w.r.t. both arguments and > is its identity
element;

• g : L×L→ L aggregates the score of direct attackers. g
is continuous, commutative, associative, monotonic w.r.t.
both arguments and ⊥ is its identity element;

• ¬ : L → L restricts the value of the attacked argument.
¬ is antimonotonic, continuous, ¬⊥ = >, ¬> = ⊥ and
¬¬a = a.
One possible (well-behaved) SAF semantic proposed in

(Leite and Martins 2011) is the simple product semantic
SPε = 〈[0, 1], τε,f,g,¬〉 where τε = 1

1+ε (with ε > 0, to
ensure the uniqueness of the semantics), x1 f x2 = x1× x2
(Product T-Norm), x1gx2 = x1+x2−x1×x2 (Probabilistic
Sum T-CoNorm) and ¬x1 = 1− x1.
Definition 12. The ranking-based semantics SAF asso-
ciates to any AF = 〈A,R〉 a ranking �SAF

AF on A such that
∀a, b ∈ A, a �SAF

AF b iff MS(a) ≥MS(b).
Example 1 (cont.). With ε = 0.1, we obtain MSPε(a) ≈
0.07 , MSPε(b) ≈ 0.91 , MSPε(c) ≈ 0.08, MSPε(d) ≈ 0.20
and MSPε(e) ≈ 0.78. We obtain the ranking: b �SAF e �SAF

d �SAF c �SAF a.
As for the Categoriser semantics, the strength of attackers

is more important than their numbers, and thus e is preferred
to c. However the impact of a defense branch on an argument
is weaker with SAF than with Categoriser.
Proposition 3. SAF satisfies Abs, In, VP, DP, CT, SCT, ↑AB,
↑DB, +AB, Tot and NaE. Other properties are not satisfied.

Discussion-based semantics
The Discussion-based semantics (Amgoud and Ben-Naim
2013) compares arguments by counting the number of paths
ending to them. If some arguments are equivalent (they have
the same number of direct attackers), the size of paths is
recursively increased until a difference is found.
Definition 13. Let F = 〈A,R〉 be an AF, a ∈ A, and i ∈ N.

Disi(a) =

{
−|R+

i (a)| if i is odd
|R−i (a)| if i is even

The discussion count of a is denoted Dis(a) =
〈Dis1(a), Dis2(a), . . . 〉.

Definition 14. The ranking-based semantics Dbs asso-
ciates to any AF = 〈A,R〉 a ranking �Dbs

AF on A such that
∀a, b ∈ A, a �Dbs

AF b iff Dis(b) �lex Dis(a).
Example 1 (cont.).

step a b c d e
1 2 0 1 1 2
2 -1 0 0 -2 -3

Using the lexicographical order, we obtain the following
ranking: b �Dbs d �Dbs c �Dbs e �Dbs a

The number of attacker is here more important than their
strength, thus c is here stronger than e.
Proposition 4. Dbs satisfies Abs, In, VP, DP, CT, SCT, CP,
↑AB, ↑DB, +AB, Tot and NaE. The other properties are not
satisfied.

Burden-based semantics
The Burden-based semantics (Amgoud and Ben-Naim
2013) assigns, at each step i, a Burden number to every ar-
gument, that depends on the Burden numbers of its direct
attackers.
Definition 15. Let F = 〈A,R〉 be an AF, a ∈ A and i ∈ N.

Buri(a) =

{
1 if i = 0
1 +

∑
b∈R−1 (a)

1
Buri−1(b)

otherwise

The Burden number of a is denoted Bur(a) =
〈Bur0(a), Bur1(a), . . . 〉.

Two arguments are lexicographically compared on the ba-
sis of their Burden numbers.
Definition 16. The ranking-based semantics Bbs asso-
ciates to any AF = 〈A,R〉 a ranking �Bbs

AF on A such that
∀a, b ∈ A, a �Bbs

AF b iff Bur(b) �lex Bur(a).
Example 1 (cont.).

step a b c d e
1 3 1 2 2 3
2 2.5 1 2 1.33 1.83

Using the lexicographical order, we obtain the following
ranking: b �Bbs d �Bbs c �Bbs e �Bbs a

As on this example, Dbs and Bbs often return the same
result. The main difference between those semantics is that
Bbs satisfies DDP, so examples related to that kind of struc-
tures lead to distinct results.
Proposition 5. Bbs satisfies Abs, In, VP, DP, CT, SCT, CP,
DDP, ↑AB, ↑DB, +AB, Tot and NaE. The other properties
are not satisfied.

Valuation with tuples
This semantics (Cayrol and Lagasquie-Schiex 2005) takes
account of all the ancestors branches of an argument (de-
fender and attacker) store in tupled values :
Definition 17. Let F = 〈A,R〉 be an AF and a ∈ A. Let
vp(a) be the (ordered) tuple of even integers representing
the lengths of all the defense branches of a, i.e. vp(a) is the
smallest ordered tuple such that |BR+

n (a)| = x ⇒ n ∈x
vp(a), where∈x means ”appears at least x times”. Similarly



let vi(a) be the (ordered) tuple of odd integers representing
the lengths of all the attack branches of a, i.e. vi(a) is the
smallest ordered tuple such that |BR−n (a)| = x ⇒ n ∈x
vi(a). A tupled value for a is the pair v(a) = [vp(a), vi(a)].

When cycles exist in the AF, some tuples can be infinite.
To calculate them, this method requires a highly involved
process, that turn cyclical graphs into infinite acyclic graphs.
We thus only consider this approach for acyclic graph, and
denote it by Tuples∗.

Once the tupled value of each argument has been com-
puted, one can compare them. To do so one has to compare
the length of attack/defense branches and, in case of a tie, to
compare the values inside each tuples (see Algorithm 1).

Algorithm 1: Tuples∗

Input: v(a), w(b) two tupled values of arguments a and b
Output: A ranking �T between a and b

1 begin
2 if v = w then a �T b and b �T a;
3 else
4 if |vi| = |wi| and |vp| = |wp| then
5 if vp �lex wp and vi �lex wi then a �T b;
6 else
7 if vp �lex wp and vi �lex wi then a ≺T b;

else a 6�T b and a 6�T b;

8 else
9 if |vi| ≥ |wi| and |vp| ≤ |wp| then a ≺T b;

10 else
11 if |vi| ≤ |wi| and |vp| ≥ |wp| then a �T b;

else a 6�T b and a 6�T b;

Let us remark that two arguments can be incomparable. It
is the case, for example, if an argument has strictly more at-
tack branches and more defense branches than another one.
Consequently, this semantics returns a partial ranking be-
tween arguments.

As example 1 contains a cycle, we can not compute
Tuples∗ on this running example.

Proposition 6. The ranking-based semantics Tuples∗ satis-
fies Abs, In, VP, +DB, ↑AB, ↑DB, +AB, NaE and AvsFD. The
other properties are not satisfied.

Matt & Toni
Matt and Toni (2008) compute the strength of an argument
using a two-person zero-sum strategic game. This game con-
fronts two players, a proponent and an opponent of a given
argument, where the strategies of the players are sets of ar-
guments. For an AF = 〈A,R〉 and a ∈ A, the sets of strate-
gies for the proponent and opponent are SP (a) = {P | P ⊆
A, a ∈ P} and SO = {O | O ⊆ A} respectively.

Definition 18. Let F = 〈A,R〉 be an AF and X,Y ⊆ A.
The set of attacks from X to Y is defined by Y←XF =
{(a, b) ∈ X × Y | (a, b) ∈ R}. The degree of acceptabil-
ity of P w.r.t O is given by φ(P,O) = 1

2 [1 + f(|O←PF |) −
f(|P←OF |)] where f(n) = n

n+1 .

Definition 19. Let F = 〈A,R〉 be an AF. The rewards of
P , denoted by rF (P,O), are defined by :

rF (P,O) =

{
0 iff ∃a, b ∈ P, (a, b) ∈ R,
1 iff |P←OF | = 0,
φ(P,O) otherwise

Proponent and opponent choose mixed strategies, ac-
cording to some probability distributions, respectively p =
(p1, p2, . . . , pm) and q = (q1, q2, . . . , qn), with m =
|SP | and n = |SO|. For each argument a ∈ A, the
proponent’s expected payoff E(a, p, q) is then given by
E(a, p, q) =

∑n
j=1

∑m
i=1 piqjri,j . Finally the value of the

zero-sum game for an argument a, denoted by s(a), is
s(a) = maxpminq E(a, p, q).
Definition 20. The ranking-based semantics M&T asso-
ciates to any AF = 〈A,R〉 a ranking �M&T

AF on A such that
∀a, b ∈ A, a �M&T

AF b iff s(a) ≥ s(b).
Example 1 (cont.). One obtains s(a) ≈ 0.17 , s(b) = 1 ,
s(c) = 0.25, s(d) = 0.25 and s(e) = 0.5 and the following
preorder: b �M&T e �M&T c 'M&T d �M&T a.

On this example, we can see that once again the strength
of attackers is more important than their numbers (e is
ranked higher than d).
Proposition 7. The ranking-based semantics M&T satisfies
Abs, In, VP, +AB, SC, Tot, NaE and AvsFD. Other properties
are not satisfied.

Discussion
As it can be easily checked on the running example, all
these proposed ranking semantics have distinct behaviors
(the ranking obtained is different for each semantics): this
justifies the need of some axiomatic work. Our work initi-
ates this study, by checking properties that have been pro-
posed in the papers that introduce the different semantics.
Our analysis is applied to existing semantics, but any new
semantics could be inspected through the same lens.4 Ta-
ble 1 summarizes the properties satisfied by the ranking se-
mantics we consider in this paper. We also checked what are
the properties satisfied by the usual Dung’s Grounded se-
mantics, that gives some hints on the compatibility of these
properties with classical semantics (note that, in this case,
this is a degenerate ranking semantics with only two levels):
Proposition 8. The grounded semantics satisfies Abs, In,
CT, QP, Tot, NaE, AvsFD. Other properties are not satisfied.

A cross×means that the property is not satisfied, symbol
X means that the property is satisfied, symbol − means that
the property can not be applied to the semantics (because
the semantics is not compatible with the constraint given by
the rule), and the shaded cells highlight the results already
proved in the literature.

As a general comment, one can check in the table that
SAF, Cat, Dbs and Bds share a lot of properties. Tuples∗
and M&T are also similar (they are the only ones that satisfy
AvsFD). This seems at first sight to draw two general classes
of semantics.

4For instance, the semantics very recently proposed in (Grossi
and Modgil 2015).



Properties SAF Cat Dbs Bbs Tuples∗ M&T Grounded
Abs X X X X X X X
In X X X X X X X
VP X X X X X X ×
DP X X X X × × ×
CT X X X X × × X

SCT X X X X × × ×
CP × × X X × × ×
QP × × × × × × X

DDP × × × X × × ×
SC × × × × - X ×
⊕DB × × × × × × ×
+DB × × × × X × ×
↑AB X X X X X × ×
↑DB X X X X X × ×
+AB X X X X X X ×
Tot X X X X × X X
NaE X X X X X X X

AvsFD × × × × X X X

Table 1: Properties satisfy by the studied ranking semantics

As for properties, we see that the properties Abs, In and
VP are satisfied by all the ranking semantics. This is ex-
pected, since these properties really seem necessary for a
good ranking semantics. NaE is also satisfied by all seman-
tics. This is also a very basic requirement for a ranking se-
mantics and we also view it as mandatory. NaE mainly says
that the non-attacked arguments are all equivalent. This is
a kind of compatibility principle with usual Dung’s seman-
tics, and it says that only your attackers should impact your
ranking, not the arguments you attack.5 Another property
that we consider as a requirement is the Tot property, which
is in line with the idea of “ranking” semantics. It would be
necessary if one want to use these semantics in real applica-
tions. This is a drawback of Tuples∗. An interesting question
is to know if it is possible to refine Tuples∗, i.e. to define a
semantics close to Tuples∗, but that is computable for argu-
mentation frameworks with cycles, and that satisfies Tot. A
last property satisfied by all semantics is +AB, which states
that adding an attack branch towards an argument degrades
its ranking. This also seems to be a perfectly natural require-
ment for ranking semantics: the more you are attacked, the
worse you are.

Overall, this gives us a set of 6 properties that should be
satisfied by any ranking semantics: Abs, In, VP, NaE, Tot
and +AB. One can note that Abs, In, NaE and Tot are satis-
fied by the grounded semantics, so they are compatible with
usual Dung’s semantics. VP and +AB are not satisfied by the
grounded semantics, because it only has two levels of eval-
uation (accepted/rejected), and these two properties really
introduces graduality in the evaluation.

A very discriminating property is AvsFD, which states
that an argument that is (only) attacked once is worse than
an argument that have any number of attacks that all belong
to defense branches. We think this requirement is very nat-
ural, and it seems to be a good candidate as being a basic
property. Nonetheless one can check that SAF, Cat, Dbs and

5Note that it could make sense to make a distinction between
arguments that attack a lot of arguments and the ones that do not —
so to violate NaE, in particular. This could be considered as some
kind of power index. But this is not the aim of ranking semantics.

Bds do not satisfy it, whereas Tuples∗ and M&T do. So this
property can be seen as a kind of boundary between two
sub-classes of ranking properties.

This distinction is interesting since it allows to introduce
a discussion on the semantics of ranking semantics, and to
argumentation semantics in general. The question relates to
the status of the missing information in argumentation sys-
tems. Basically this can be summed up as follows: do the
absence of attack between a and b means that I know that
there is no attack between a and b, or does it means that I do
not know if there is an attack between a and b6. If one adopts
the first interpretation, then AvsFD should be satisfied, since
we know that an argument is defended, and the other one
attacked. If one adopts the second one, then AvsFD can be
violated, since it may appear later that the attacked argu-
ment could be finally defended, while the defended argu-
ments, with numerous attack paths, meaning that it is really
disputed, can loose some of its defenses.

Interestingly, while all semantics agree axiomatically as
which arguments should be the best in a system (VP), there
is no consensus regarding the worst arguments. SC is very
interesting in that respect, but as can be observed none of the
semantics comply with it, except the one of Matt and Toni.

Properties related to ‘change’ are very appealing. A sen-
sible meta-property could be to state that the ‘response’ of
a semantics to a change should be the same, whatever the
current state of the argument system. As can be seen with
+DB and ⊕DB, this is not case: if one accepts that non-
attacked arguments should be the best, it cannot be the case
that adding a defense branch always improve the situation.

Finally, ‘local’ properties (CP, QP, DP, (S)CT), just look-
ing at direct attackers (or defenders), make choice which can
be justified in some situations, but which seem hardly gen-
eral (and sometimes impossible to reconcile with some more
global properties, as our Prop. 1 shows).

One last comment is that SAF and Cat satisfy the same set
of properties, whereas they have quite different definitions.
This mean that at least one property is lacking in order to
discriminate these two operators.

Conclusion
In this work we proposed a comparative study of exist-
ing ranking-based semantics. It turns out that the existing
ranking-based semantics exhibit quite different behaviours
and satisfy different properties. We propose to take as basic
properties for ranking-based semantics Abs, In, VP, NaE,
Tot and +AB. We also put forward AvsFD that discriminates
two subclasses of semantics.

There is still work needed on the topic. First to pro-
pose other ranking-based semantics. But it is also impor-
tant to find other logical properties, and to try to characterize
classes of semantics with respect to these properties.
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