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Abstract

In this paper, we address the problem of deriving sensible in-
formation from a collection of argumentation systems coming
from different agents. A general framework for merging ar-
gumentation systems from Dung’s theory of argumentation is
presented. Each argumentation system gives both a set of ar-
guments and the way they interact (i.e. attack or non-attack)
according to the corresponding agent. The aim is to define
the argument system (or the set of argument systems) that
best represents the group. Our framework is general enough
to handle the case when agents do not share the same set of
arguments. Merging argumentation systems is shown as a
valuable approach for defining (sets of) arguments acceptable
by the group.

Introduction
Argumentation is based on the exchange and valuation of
interacting arguments which may represent information of
various kinds, especially beliefs or goals. Argumentation
has been applied, among others, in the legal domain, for col-
lective decision support systems or for negotiation support.

Several theories of argumentation exist; each of them
makes explicit the nature of arguments, the way arguments
are generated, how they interact and how to evaluate them,
and finally what are the most acceptable arguments. A key
issue is the interaction between arguments which is typically
based on a notion of attack; for example, when an argument
takes the form of a logical proof, arguments for a statement
and arguments against it can be put forward. In that case,
the attack relation relies on logical inconsistency.

The theory of argumentation frameworks as introduced
by (Dung 1995) is abstract enough to manage without any
assumptions on the nature of arguments or the attack re-
lation. As such, it includes several formal systems devel-
oped so far for commonsense reasoning or logic program-
ming (Dung 1995). For instance, when an agent has con-
flicting pieces of belief (viewed as arguments), a (nontrivial)
set of plausible consequences can be derived from the most
acceptable arguments for the agent (additional information
like a plausibility ordering are often taken into account in
the evaluation phase). Much work has been devoted to this
issue (see for example (Dung 1995; Krause et al. 1995;
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Prakken & Sartor 1997; Pollock 2001; Amgoud & Cayrol
2002; Prakken & Vreeswijk 2002)).

In a multi-agent setting, argumentation can also be used
to represent (part of) some information exchange processes,
like negotiation, or persuasion (see for example (MacKenzie
1979; Walton & Krabbe 1995; Gordon 1995; Parsons & Jen-
nings 1996; Amgoud, Maudet, & Parsons 2000; Amgoud &
Parsons 2002; Amgoud & Prade 2004)). For instance, a ne-
gotiation process between two agents about whether some
piece of belief must be considered as true given some ev-
idence can be modelled as a two-player game where each
move consists in reporting an argument which attacks argu-
ments given by the opponent.

In this paper, we also consider argumentation in a multi-
agent setting, but from a very different perspective. The pur-
pose is to define argumentation systems for a group of agents
from their individual argumentation systems. This amounts
to make precise the set of arguments of the group and the
global attack relation for the group. This can be seen as
an idealized, “fully-informed”, negotiation protocol: all the
agents give their arguments and attack relation, and agree
to find a result for the whole group. Compared with nego-
tiation protocols, where agents only exchange parts of their
arguments/attack relation, the result obtained by merging ar-
gumentation systems can be viewed as an “ideal” result one
can achieve if the interaction between agents is not polluted
by some fixed protocol (the distinction is similar to the one
between games under complete information vs games under
incomplete information). Merging argumentation systems
can also be used to define a baseline for comparing different
negotiation protocols: the closer the result of the negotiation
protocol to the result of the merging process, the best.

Our framework is general enough to handle the case when
agents do not share the same set of arguments and disagree
on the attack relation: each agent may have her own view
on what an attack is and as a consequence, an agent may
believe that one argument attacks another argument, while
another agent may believe that this is not the case. Merging
argumentation systems can be used to define (sets of) argu-
ments acceptable by the group. By means of example, we
show that it leads to results which are much more expected
than those furnished by a direct voting on the (sets of) ar-
guments acceptable by each agent. Finally, we also briefly
explain how the framework can be further refined to take



into account attacks strengths for each agent and each pair
of arguments, and even computational resources at the group
level.

Formal preliminaries
We focus on Dung’s theory of argumentation (Dung 1995).

Definition 1 A finite argumentation system AF = 〈A, R〉
over A is given by a finite set A of arguments and a binary
relation R on A called an attack relation. Consider ai and
aj ∈ A. aiRaj means that ai attacks aj (also denoted by
(ai, aj) ∈ R).

〈A, R〉 clearly defines a directed graph G called the attack
graph.

Whether a set of arguments can be accepted depends on
the way arguments interact within the set but also w.r.t. the
other arguments of A. Collective acceptability is based on
two key notions: lack of conflict and collective defence.

Definition 2 Let 〈A, R〉 be an argumentation system.

Conflict-free set A set E ⊆ A is conflict-free if and only if
@a, b ∈ E such that aRb.

Collective defence Consider E ⊆ A, a ∈ A. E (collec-
tively) defends a if and only if ∀b ∈ A, if bRa, ∃c ∈ E
such that cRb. E defends all its elements if and only if
∀a ∈ E, E collectively defends a.

(Dung 1995) defines several semantics for collective ac-
ceptability based on those two notions; among them the ad-
missible semantics and the preferred semantics.

Definition 3 Let 〈A, R〉 be an argumentation system.

Admissible semantics A set E ⊆ A is admissible iff E is
conflict-free and E defends all its elements.

Preferred semantics A set E ⊆ A is a preferred extension
iff E is maximal for set inclusion among the admissible
sets.

Definition 4 An acceptability relation, denoted by AccAF,
for a given argumentation system AF = 〈A, R〉, is a total
function from 2A to {true, false} which associates each sub-
set E of A with true if E is an acceptable set for AF and
with false otherwise.

Usually, an acceptability relation is based on a specific se-
mantics (plus possibly a selection principle). For instance, a
set of arguments can be considered acceptable iff it coincides
with one of the extensions (for the chosen semantics). Al-
ternatively, a set of arguments can be considered acceptable
iff it is included in one (credulous selection) or all (skepti-
cal selection) the extensions. Whatever the way it is defined,
an acceptability relation can be viewed as a choice function
among the elements of 2A.

Motivation
When merging a profile of argumentation systems (i.e., a
vector 〈AF1, . . . , AFn〉 of such systems AFi = 〈Ai, Ri〉
where each index i corresponds to a specific agent), one ba-
sically wants to define an argumentation system (or a set of
such systems) which reflects at best how arguments interact

for the whole group of agents.Among other things, this can
be used to define the sets of arguments considered accept-
able for the group.

Definition 5 A joint acceptability relation for a multiset
{AF1, . . . , AFn} of AFs, denoted by Acc

{AF1,...,AFn}
, is a

total function from 2
S

i
Ai to {true, false} which associates

each subset E of
⋃

i Ai with true if E is a jointly acceptable
set for {AF1, . . . , AFn} and with false otherwise.

For instance, a joint acceptability relation for a multi-
set {AF1, . . . , AFn} can be defined by the acceptability re-
lations AccAFi

(based themselves on some semantics and
some selection principles), which can coincide for every
AFi (but this is not mandatory) and a voting method V :
{true, false}n 7→ {true, false}:

Acc
{AF1,...,AFn}

(E) = V (AccAF1

(E), . . . , AccAFn

(E)).

So, a set of arguments can be considered acceptable for
the group iff it is acceptable for “sufficiently many” agents
from the group. The voting method under consideration
makes precise what “sufficiently many” means: for instance,
one agent, every agent, k agents (where k is fixed a priori),
k% of the total number of agents (including the (weak) ma-
jority rule when k = 50 and the strict majority rule when
k = 50 + ε). However, this approach may easily lead to
counterintuitive results:

Example 1 Let AF1 = 〈{a, b, e, f}, {(a, b), (b, a), (e, f)}〉,
AF2 = 〈{b, c, d, e, f}, {(b, c), (c, d), (f, e)}〉 and AF3 =
〈{e, f}, {(e, f)}〉 be three argumentation systems. What-
ever the semantics (among Dung’s ones), c belongs to no
extension of AF2, hence it cannot be elected as a member
of an acceptable set whatever the voting method (under the
reasonable assumption that it is a choice function based on
extensions). However since c (resp. a) is not among the ar-
guments reported by the first agent (resp. the second and the
third ones), it can be sensible to assume that both agents
(having no other information than the ones given by the
other agents) agree on the fact that a attacks b and b at-
tacks c. Indeed, this assumption does not contradict what
the three agents report as to the way arguments interact.
Under this assumption, {c} should be considered as cred-
ulously acceptable by the group.

Such a naive voting approach suffers from two major
drawbacks:

Problem 1 Voting makes sense only if all agents consider
the same set of arguments A at start (otherwise, the set
2A of alternatives is not common to all agents). However,
it can be the case that the sets of arguments reported by
the agents differ one another.

Problem 2 Voting relies only on the selected extensions:
the attack relations (from which extensions are charac-
terized) are not taken into consideration any more once
extensions have been computed. This leads to let aside
much significant information which could be exploited to
define the sets of acceptable arguments at the group level.



Partial argumentation systems
In order to define the merging of argumentation systems in
a satisfying manner, one must find a way to solve Problem 1
above. Taking the union of the argumentation systems AF1,
..., AFn, i.e. considering the system AF =

⋃n

i=1 〈Ai, Ri〉
defined by AF = 〈

⋃n

i=1 Ai,
⋃n

i=1 Ri〉 would be over sim-
plistic in many cases. Indeed, it would lead to assimilate
pieces of information of very different nature: ignorance
about attack and absence of attack.

Example 1 (continued) Agent 1 does not report c at start,
hence one may assume that she ignores whether some inter-
actions between c and the arguments she reports exist or not.
For instance, she ignores whether a attacks c or not. Now,
what’s about the interaction between f and e from the point
of view of agent 1? Since 1 reports both e and f but no at-
tack (f, e), the conclusion is that 1 believes that f does not
attack e. Accordingly, there is no conflict between the be-
liefs of agents 1 and 2 concerning interactions with c while
there is a conflict between their beliefs as to the way e and
f interact.

Handling the two kinds of information within a uniform
setting calls for an extension of the notion of argumentation
systems, that we call partial argumentation systems.

Definition 6 A partial argumentation system over A is a
quadruple PAF = 〈A, R, I, N〉 where A is a set of argu-
ments, R, I, N are binary relations on A. R is the attack
relation, I is called the ignorance relation and is such that
R∩ I = ∅. N = (A×A) \ (R∪ I) is called the non-attack
relation.
N is deduced from A, R and I , so a partial argumentation
system can be fully specified by 〈A, R, I〉. We will use both
notations in the following.

Each AF is a particular PAF for which the set I is empty.
In an AF, the N relation also exists even if it is not given
explicitly (N = A × A \ R, I = ∅).

Each PAF over A can be viewed as a compact representa-
tion of a set of AFs over A, called its completions:

Definition 7 Let PAF = 〈A, R, I〉. Let AF = 〈A, S〉. AF is
a completion of PAF iff R ⊆ S ⊆ R ∪ I .
The set of the completions of PAF is denoted C(PAF).

Now, Problem 1 can be addressed by first associating each
argumentation system AFi with a corresponding PAFi so
that all PAFi are about the same set of arguments

⋃n
i=1 Ai.

We define the notion of expansion of an AF:

Definition 8 Let P = 〈AF1, . . . , AFn〉 be a profile of n AFs
with each AFi = 〈Ai, Ri, Ni〉. An expansion of an AF =
〈A, R〉 given P is any PAF exp(AF,P) defined by 〈A ∪⋃

i Ai, R
′, I ′, N ′〉 s.t. R ⊆ R′ and (A × A) \ R ⊆ N ′.

By convention, if P = ∅ then exp(AF,P) = AF. exp is
referred to as an expansion function.

In order to be general enough, this definition does not im-
pose many constraints on the resulting PAF: what is impor-
tant is to preserve the attack and non-attack relations from
the initial AF while extending its set of arguments. Many
policies can be used to give rise to expansions of different

kinds, reflecting the various attitudes of agents in light of
“new” arguments; for instance, if a is any argument consid-
ered by agent i at start and a “new” argument b has to be
incorporated, agent i can (among other things):

• always reject b (e.g. adding (b, b) to its relation R′
i),

• always accept b (adding (a, b), (b, a) and (b, b) to its non-
attack relation N ′

i ),

• just express its ignorance about b (adding (a, b), (b, a) and
(b, b) to its ignorance relation I ′

i).

Each agent may also compute the exact interaction be-
tween a and b when the attack relation is not primitive
but defined from more basic notions (as in the approach
by Elvang-Gøransson et al., see e.g. (Elvang-Gøransson,
Fox, & Krause 1993a; 1993b; Elvang-Gøransson & Hunter
1995)). Note that if she has limited computational resources,
agent i can compute exact interactions as far as she can, then
express ignorance for the remaining ones.

In the following, we specifically focus on consensual ex-
pansions. Intuitively, the consensual expansion of an argu-
mentation system AF = 〈A, R〉 given a profile of such sys-
tems is obtained by adding a pair of arguments (a, b) (where
at least one of a, b is not in A) into the attack (resp. the non-
attack relation) provided that all other agents of the profile
that know the two arguments agree on the attack 1 (resp. the
non-attack); otherwise, it is added to the ignorance relation:

Proposition 1 Let P = 〈AF1, . . . , AFn〉 be a profile of
n AFs with each AFi = 〈Ai, Ri〉. Let AF = 〈A, R〉,
and let N be the corresponding non-attack relation. Let
conf(P) = (

⋃
i Ri) ∩ (

⋃
i Ni) be the set of interactions

for which a conflict exists within the profile. The consen-
sual expansion of AF over P noted expC = 〈A′, R′, I ′, N ′〉
with:

• A′ = A ∪
⋃

i Ai,
• R′ = R ∪ ((

⋃
i Ri \ conf(P)) \ N),

• I ′ = conf(P) \ (R ∪ N),
• N ′ = (A′ × A′) \ (R′ ∪ I ′).

is an expansion of AF over P in the sense of Definition 8.

Merging operators
In order to deal with Problem 2, we suggest to merge inter-
actions instead of sets of acceptable arguments. The goal is
to characterize argumentation systems which are as close as
possible to the given profile of argumentation systems, taken
as a whole. A way to achieve it consists in defining a notion
of “distance” between an AF and a profile of AFs, or more
generally between a PAF and a profile of PAFs. This calls
for a notion of pseudo-distance between two PAFs, and a
way to combine such pseudo-distances:

Definition 9 A pseudo-distance d between PAFs over A is
a mapping which associates a real number to each pair
of PAFs over A and satisfies the properties of symmetry
(d(x, y) = d(y, x)) and minimality (d(x, y) = 0 iff x = y).
d is a distance if it satisfies also the triangular inequality
(d(x, y) ≤ d(x, y) + d(y, z)).

1i.e. if a, b ∈ Ai, then (a, b) ∈ Ri



Definition 10 An aggregation function is a mapping ⊗ from
(R+)n to (R+) (strictly speaking, it is a family of relations,
one for each n), that satisfies non-decreasingness (if xi ≥
x′

i, then ⊗(x1, . . . , xi, . . . , xn) ≥ ⊗(x1, . . . , x
′
i, . . . , xn)),

minimality (⊗(x1, . . . , xn) = 0 if xi = 0, ∀i), and identity
(⊗(x) = x).

The merging of a profile of AFs is defined as a set of AFs:

Definition 11 Let P = 〈AF1, . . . , AFn〉 be a profile of n
AFs. Let d be any pseudo-distance between PAFs, let ⊗
be an aggregation function, and let exp1, . . . ,expn be n
expansion functions. The merging of P is the set

∆⊗
d (〈AF1, . . . , AFn〉, 〈exp1, . . . ,expn〉) =

{AF over
⋃

i

Ai | AF minimizes ⊗n
i=1d(AF,expi(AFi,P))

Thus, merging a profile of AFs P = 〈AF1, . . . , AFn〉 is a
two-step process:

expansion : An expansion of each AFi over P is first com-
puted. Note that nothing prevents from considering ex-
pansion functions that are specific to each agent. What is
important is that expi(AFi,P) is a PAF over A =

⋃
i Ai.

fusion : The AFs over A that are selected as result of the
merging are the ones that best represent P (i.e. that are
the “closest” to P).

In the following, we will focus on the case when every
agent uses the consensual expansion. So to avoid too heavy
notations, we remove 〈exp1, . . . ,expn〉 from the list of pa-
rameters of merging operators.

Note that it is possible to refine Definition 11 so as to
include integrity constraints into the picture. This can be
useful if one has some (unquestionable) knowledge about
the expected result (some attacks between arguments which
have to hold for the group). It is then enough to look only to
the AFs that satisfy the constraints, similarly to what is done
in propositional belief base merging (see e.g. (Konieczny
& Pino Pérez 2002)). In contrast to the belief base merging
scenario, one can also impose constraints on the structure
of the candidate AFs. In particular, considering only acyclic
AFs can prove valuable since (1) such AFs are well-founded,
(which means that only one extension has to be considered
whatever the underlying semantics – among Dung’s ones),
and (2) this extension (referred to as the grounded one, see
(Dung 1995)) can be computed in time polynomial in the
size of the AF (while computing a single extension is in-
tractable for the other semantics in the general case – under
the standard assumptions of complexity theory – see (Dunne
& Bench-Capon 2002)).

Now, many pseudo-distances between PAFs and many ag-
gregation functions can be used, giving rise to many merging
operators. Usual aggregation functions include the sum, the
max and the leximax, but nothing prevents from taking ad-
vantage of nonsymmetric functions (this is particularly use-
ful to model situations when some agents are more important
than others). Some aggregation functions (like sum) enable
to take into account the number of agents believing that an
argument attacks or not another argument:

Example 1 (continued) Two agents over three agree on the
fact that e attacks f and f does not attack e. It may prove
sensible that the group agrees with the majority. Taking sim-
ply the union of the three AFs as their merging would lead
to consider as well that f attacks e, while more than half of
the agents believes that this is not the case.

The aggregation function is very important for tuning the
operator behaviour with the expected one. For example, if
one wants to solve conflicts with use of majority, sum is a
possible choice. If one wants to be more consensual, by
trying to define a result close to every agent, the leximax
function can be more interesting. The distinction between
majority and arbitration operators as considered in proposi-
tional belief base merging (Konieczny & Pino Pérez 2002)
also applies here.

In the following, we focus on the edition distance between
PAFs:

Definition 12 Let PAF1 = 〈A, R1, I1, N1〉 and PAF2 =
〈A, R2, I2, N2〉 be two PAFs over A.
• Let a, b be two arguments ∈ A. The edition distance be-

tween PAF1 and PAF2 over a, b is the relation dea,b such
that:
– dea,b(PAF1, PAF2) = 0 iff (a, b) ∈ R1 ∩ R2 or I1 ∩ I2 or

N1 ∩ N2,
– dea,b(PAF1, PAF2) = 1 iff (a, b) ∈ R1 ∩ N2 or N1 ∩ R2,
– dea,b(PAF1, PAF2) = 0.5 otherwise.

• The edition distance between PAF1 and PAF2 is given by

de(PAF1, PAF2) = Σ(a,b)∈A×Adea,b(PAF1, PAF2).

Proposition 2 The edition distance de between PAFs is a
distance.

Example 2 Let AF1 = 〈{a, b}, {(a, b), (b, a)}〉, AF2 =
〈{b, c, d}, {(b, c), (c, d)}〉, AF3 = 〈{a, b, d}, {(a, b),
(a, d)}〉 and AF4 = 〈{a, b, d}, {(b, d), (b, a)}〉 be four ar-
gumentation systems.

First, the consensual expansions of the four AFs are:
• PAF1 = 〈{a, b, c, d}, {(a, b), (b, a), (b, c), (c, d)},
{(a, d), (b, d)}〉,

• PAF2 = 〈{a, b, c, d}, {(b, c), (c, d)}, {(a, b), (b, a),
(a, d)}〉,

• PAF3 = 〈{a, b, c, d}, {(a, b), (a, d), (b, c), (c, d)}, {}〉,
• PAF4 = 〈{a, b, c, d}, {(b, d), (b, a), (b, c), (c, d)}, {}〉

We obtain ∆Σ
de(〈AF1, . . . , AF4〉) as the set containing

the two AFs: 〈{a, b, c, d}, {(a, b), (b, a), (b, c), (c, d)}〉 and
〈{a, b, c, d}, {(a, b), (b, a), (b, c), (a, d), (c, d)}〉.

Some properties
Let us now present some properties of consensual expan-
sions and merging operators based on the edition distance,
showing them as interesting choices. We first need the no-
tion of conflict-free part of a profile of PAFs:

Definition 13 Let P = 〈PAF1, . . . , PAFn〉 be a profile of
PAFs. The conflict-free part of P is denoted by CFP (P)
and is defined by:
CFP (P) = 〈

⋃
i Ai,

⋃
i Ri \

⋃
i Ni, ICFP ,

⋃
i Ni \

⋃
i Ri〉,

where ICFP = (
⋃

i Ai×
⋃

i Ai)\((
⋃

i Ri\
⋃

i Ni)∪(
⋃

i Ni\⋃
i Ri)).



Proposition 3 Let P = 〈PAF1, . . . , PAFn〉 be a profile
of PAFs. The common part of P given by CP (P) =
〈
⋂

i Ai,
⋂

i Ri,
⋂

i Ii,
⋂

i Ni〉, is pointwise included into
CFP (P), noted CP (P) v CFP (P), i.e.:

•
⋂

i Ri ⊆
⋃

i Ri \
⋃

i Ni;
•

⋂
i Ii ⊆ ICFP ;

•
⋂

i Ni ⊆
⋃

i Ni \
⋃

i Ri.

The common part of a profile of n PAFs (resp. AFs) is not
always a PAF (resp. an AF). Contrastingly, the conflict-free
part of a profile of n PAFs is a PAF (still, the conflict-free
part of a profile of n AFs is not always an AF).

A valuable property of any consensual expansion over a
profile of AFs is that the conflict-free part is preserved:

Proposition 4 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs.
For each i ∈ 1 . . . n, we have CFP (P) v expC(AFi,P).

One can also define a notion of coherence between AFs:

Definition 14 Let AF1 = 〈A1, R1〉, AF2 = 〈A2, R2〉 be
two AFs. AF1, AF2 are coherent iff @a, b ∈ A1 ∩ A2 such
that (a, b) ∈ (R1 \ R2) ∪ (R2 \ R1). Otherwise they are
incoherent.
Let P = 〈AF1, . . . , AFn〉 be a profile of AFs. P is coherent
iff all its AFs are pairwise coherent. Otherwise it is incoher-
ent.

When a profile of AFs is coherent, its conflict-free part is
the union of its elements, and the converse also holds:

Proposition 5 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs.
P is coherent iff CFP (P) =

⋃
i AFi.

The notion of compatibility of a profile of PAFs over the
same set of arguments can also be introduced:

Definition 15 Let P = 〈PAF1, . . . , PAFn〉 be a profile of
PAFs over a set of arguments A. PAF1, . . . , PAFn are said
to be compatible iff they have at least one common comple-
tion. Otherwise they are incompatible.

Proposition 6 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs.
P is coherent iff expC(AF1,P), . . . , expC(AFn,P) are
compatible.

Let us now give some properties achieved by merging op-
erators based on the edition distance:

Proposition 7 Let P = 〈AF1, . . . , AFn〉 be a profile of AFs.
Assume that the expansion function under use for each agent
is the consensual one. For any AF ∈ ∆⊗

de(〈AF1, . . . , AFn〉),
we have CFP (〈AF1, . . . , AFn〉) v AF.

Proposition 8 Let P = 〈AF1, . . . , AFn〉 be a profile of
AFs. Assume that the expansion function under use for
each agent is the consensual one. If P is coherent, then
∆⊗

de(〈AF1, . . . , AFn〉) is reduced to the singleton {
⋃

i AFi}.

When sum is used as an aggregation function and all AFs
are about the same set of arguments, the merging of a profile
can be characterized in a concise way, thanks to the notion of
majority graph. Intuitively the majority graph of a profile of
AFs over the same set of arguments is obtained by applying
the strict majority rule to decide whether a attacks b or not,
for every pair (a, b) of arguments. Whenever there is no
strict majority, an ignorance edge is generated.

Definition 16 Let P = 〈AF1, . . . , AFn〉 be a profile of
AFs over the same set A of arguments. The majority PAF
MP (P) of P is the PAF over A such that ∀a, b ∈ A:2

• (a, b) ∈ R iff #({i ∈ 1 . . . n | (a, b) ∈ Ri}) > #({i ∈
1 . . . n | (a, b) ∈ Ni});

• (a, b) ∈ N iff #({i ∈ 1 . . . n | (a, b) ∈ Ni}) > #({i ∈
1 . . . n | (a, b) ∈ Ri});

• (a, b) ∈ I otherwise.

Proposition 9 Let 〈AF1, . . . , AFn〉 be a profile of AFs over
the same set A of arguments. ∆Σ

de(〈AF1, . . . , AFn〉) =
C(MP (〈AF1, . . . , AFn〉)).

Acceptability for merged AFs
Starting from a set of AFs (over possibly different sets of ar-
guments), a merging operator enables to compute another set
of AFs (this time, over the same set of arguments) which are
the best candidates to represent the AFs of the group. There
is an important epistemic difference between those two sets
of AFs, the first one reflects different points of view (given
by different agents), the second one denotes the uncertainty
on the result.

It is interesting to compare the joint acceptability relation
for the input profile P = 〈AF1, . . . , AFn〉 with the joint
acceptability relation for ∆⊗

d (〈AF1, . . . , AFn〉). Unsurpris-
ingly, both predicates are not connected, even in the case
when the two joint acceptability relations are based on the
same notion of individual acceptability and the same voting
method.

Thus, it can be the case that new jointly acceptable sets
are obtained after merging while they were not jointly ac-
ceptable at start:

Example 2 (continued) Assume that the individual accept-
ability relation for all agents is the one which considers a set
of arguments as acceptable when it is one of the preferred
extensions; assume also that the voting method is (weak)
majority. {a}, {b} are acceptable for agent 1, {b, d} for
agent 2, {a} for agent 3 and {b} for agent 4. Hence, the
weak majority rule leads to consider only {a} or {b} ac-
ceptable for the group.

Once the AFs have been merged using ∆Σ
de, one obtains

two AFs representing the best compromises for the group.
Individual acceptability leads to consider {a, c} and {b, d}
as acceptable in both cases. Hence each of those sets is con-
sidered jointly acceptable. Thus {a, c} is acceptable for the
group, while c does not belong to any preferred extensions
of the four initial AFs.

Furthermore, one can show that if a set of arguments is in-
cluded into one of the preferred extensions for an agent, it is
not necessarily included into one of the preferred extensions
of any AF from the result of the merging. (This remains true
for singletons). The converse is also true (see for instance
{a, c} in the above example).

More surprisingly, even if a set of arguments is included
into each preferred extension for an agent, it is not guaran-
teed to be included into a preferred extension of an AF from

2For any set S, #(S) denotes the cardinal of S.



the result of the merging. Conversely, if a set of arguments
is included into every preferred extension of the AFs from
the result of the merging, it is not guaranteed to be included
into a preferred extension for one of the agents. Intuitively,
this can be explained by the fact that if an argument is ac-
cepted by all agents for bad reasons (for instance, because
they lack information about attacks on it), it can be rejected
by the group after the merging. More formally, this is due to
the fact that nothing ensures that one of the initial AFs will
belong to the result of the merging and to the nonmonotonic-
ity of acceptability (in the sense that adding or removing a
single attack (a, b) in an AF may heavily change its exten-
sions).

Conclusion and perspectives
We have presented a new framework for merging argumen-
tation systems. Our framework is general enough to allow
for the representation of many different scenarios. No as-
sumption is made concerning the meaning of the attack re-
lations, so that such relations may differ not only because
agents have different points of view on the way arguments
interact but more generally may disagree on what an interac-
tion is. Each agent may be associated to a specific expansion
function, which enables for encoding many attitudes when
facing a new argument. Many different distances between
PAFs and many different aggregation functions can be used.

We plan to refine this framework in several directions. Let
us briefly sketch two of them:
Merging PAFs. Our framework can be extended to PAFs
merging (instead of AFs). This enables us to take into ac-
count agents with incomplete belief states regarding the at-
tack relation between arguments. Expansions of PAFs can
be defined in a very similar way to expansions of AFs (what
mainly changes is the way ignorance is handled). As PAFs
are more expressive than AFs, an interesting issue is to de-
fine acceptability for PAFs.
Attacks strengths. Assume that each attack believed by
agent i is associated to a numerical value reflecting the
strength of the attack according to the agent, i.e. the de-
gree to which agent i believes that a attacks b. It is easy
to take into account those values by modifying slightly
the definition of the edition distance over a pair or argu-
ments (for instance, viewing them as weights once normal-
ized within [0, 1]). Another possibility regarding attacks
strengths is, from unweighted attack relations, to generate
a weighted one, representing different degree of accordance
in the group. For instance, each attack (a, b) in the major-
ity PAF of a profile 〈AF1, . . . , AFn〉 can be labelled by the
ratio #({i∈1...n|(a,b)∈Ri})

n
and similarly for the non-attack

relation (this leads to consider both the attack and the non-
attack relations of the majority PAF as fuzzy relations). Cor-
responding acceptability relations remain to be defined. This
is another perspective of this work.
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