
Introduction MUS Compilation

Incremental SAT and applications

Gilles Audemard

Montpellier - March 2014

Incremental SAT Montpellier - March 2014 1 / 46

audemard
Texte

Introduction MUS Compilation

Introduction and Motivations

Incremental SAT Montpellier - March 2014 2 / 46

Introduction MUS Compilation

SAT solving in practice

SAT is a success story in computer science

Many practical applications

Source J. Marques-Silva

Incremental SAT Montpellier - March 2014 3 / 46

Introduction MUS Compilation

Erdos discrepancy conjecture (1932)

Infinite sequence of +1 and -1 : < �1, 1, 1,�1 � 1, x6, x7, . . . >

8C9k , d such that |
Pk

i=1 xi⇥d | � C

A new application

The conjecture was proven for C = 2 using a SAT solver with an UNSAT
certificate (Glucose...)

UNSAT proof... 13 Gb

cgi.csc.liv.ac.uk/~konev/SAT14/

www.newscientist.com/article/dn25068-wikipediasize-maths-proof-too-big-for-humans-to-check.html

Incremental SAT Montpellier - March 2014 4 / 46

cgi.csc.liv.ac.uk/~konev/SAT14/
www.newscientist.com/article/dn25068-wikipediasize-maths-proof-too-big-for-humans-to-check.html

Introduction MUS Compilation

Seminal papers

"Planning as Satisfiability". Kautz and Selman. ECAI 92

"Symbolic Model Checking Without BDD". Biere, Cimatti, Clarke and Zhu.
TACAS 1999.

"GRASP - a new search algorithm for satisfiability".Sakallah and
Marques-Silva. ICCAD 1996

"Chaff : Engineering an Efficient SAT Solver ". Moskewicz, Madigan, Zhao,
Zhang and Malik. DAC 2001.

"An extensible SAT solver ". Een and Sorensson. SAT 2003

Minisat source code

Incremental SAT Montpellier - March 2014 5 / 46

Introduction MUS Compilation

CDCL architecture
Preprocessing

Restarts Decision

Conflict Analysis Cleaning

Incremental SAT Montpellier - March 2014 6 / 46

Introduction MUS Compilation

CDCL architecture
Preprocessing

Restarts Decision

Conflict Analysis Cleaning

Preprocessing
I Encoding does not take into account connexions between some clauses and

some variables
I Simplify the initial formula
I Very important

Incremental SAT Montpellier - March 2014 6 / 46

Introduction MUS Compilation

CDCL architecture
Preprocessing

Restarts Decision

Conflict Analysis Cleaning

Decision variable heuristic
I Dynamic : Favor variables that are used recently in conflict analysis
I Phase saving (do not forget the past)

Incremental SAT Montpellier - March 2014 6 / 46

Introduction MUS Compilation

CDCL architecture
Preprocessing

Restarts Decision

Conflict Analysis Cleaning

Restarts : dynamic or not

Incremental SAT Montpellier - March 2014 6 / 46

Introduction MUS Compilation

CDCL architecture
Preprocessing

Restarts Decision

Conflict Analysis Cleaning

Learnt clauses database cleaning
I Avoid memory explosion and more

Incremental SAT Montpellier - March 2014 6 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Sequence of decision, propagations

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

DL 1 x1 x1,x4[c1]

DL 2 x3 x3,x8[c2], x12[c3]

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 7 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Sequence of decision, propagations

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

DL 1 x1 x1,x4[c1]

DL 2 x3 x3,x8[c2], x12[c3]

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 7 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Sequence of decision, propagations

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

DL 1 x1 x1,x4[c1]

DL 2 x3 x3,x8[c2], x12[c3]

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 7 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Sequence of decision, propagations

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

DL 1 x1 x1,x4[c1]

DL 2 x3 x3,x8[c2], x12[c3]

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 7 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Sequence of decision, propagations

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

DL 1 x1 x1,x4[c1]

DL 2 x3 x3,x8[c2], x12[c3]

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 7 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Sequence of decision, propagations

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

DL 1 x1 x1,x4[c1]

DL 2 x3 x3,x8[c2], x12[c3]

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 7 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Sequence of decision, propagations

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

DL 1 x1 x1,x4[c1]

DL 2 x3 x3,x8[c2], x12[c3]

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 7 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Sequence of decision, propagations

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

DL 1 x1 x1,x4[c1]

DL 2 x3 x3,x8[c2], x12[c3]

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 7 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Conflict analysis

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

d⇤ = c7 ⌦x9 c6 = x3 _ x8_ x7 _ x13

d1 = d⇤ ⌦x13 c5 = x3 _ x8_ x7

First resolvant that contains only one literal of the last decision level

First UIP learning scheme (related to implication graph)

d1 is added to the formula and. . .

Incremental SAT Montpellier - March 2014 8 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Conflict analysis

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

d⇤ = c7 ⌦x9 c6 = x3 _ x8_ x7 _ x13

d1 = d⇤ ⌦x13 c5 = x3 _ x8_ x7

First resolvant that contains only one literal of the last decision level

First UIP learning scheme (related to implication graph)

d1 is added to the formula and. . .

Incremental SAT Montpellier - March 2014 8 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Conflict analysis

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

d⇤ = c7 ⌦x9 c6 = x3 _ x8_ x7 _ x13

d1 = d⇤ ⌦x13 c5 = x3 _ x8_ x7

First resolvant that contains only one literal of the last decision level

First UIP learning scheme (related to implication graph)

d1 is added to the formula and. . .

Incremental SAT Montpellier - March 2014 8 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Conflict analysis

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

d⇤ = c7 ⌦x9 c6 = x3 _ x8_ x7 _ x13

d1 = d⇤ ⌦x13 c5 = x3 _ x8_ x7

First resolvant that contains only one literal of the last decision level

First UIP learning scheme (related to implication graph)

d1 is added to the formula and. . .

Incremental SAT Montpellier - March 2014 8 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Backjumping

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

d1 = x3 _ x8 _ x7

DL 1 x1 x1, x4[c1]

DL 2 x3 x3, x8[c2], x12[c3], x7[d1]...

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 9 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Backjumping

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

d1 = x3 _ x8 _ x7

DL 1 x1 x1, x4[c1]

DL 2 x3 x3, x8[c2], x12[c3], x7[d1]...

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 9 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Backjumping

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

d1 = x3 _ x8 _ x7

DL 1 x1 x1, x4[c1]

DL 2 x3 x3, x8[c2], x12[c3], x7[d1]...

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 9 / 46

Introduction MUS Compilation

A short overview of CDCL solvers

Backjumping

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

d1 = x3 _ x8 _ x7

DL 1 x1 x1, x4[c1]

DL 2 x3 x3, x8[c2], x12[c3], x7[d1]...

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 9 / 46

Introduction MUS Compilation

A word on Glucose

SAT solver developed by Laurent Simon (LABRI) and myself
Essentially based on a static measure identifying good learnt clauses (LBD)

I Agressive cleaning strategy : bad clauses have big LBD value
I Dynamic restarts based on LBD
I Other features...

Efficient on UNSAT problems

c1 = x1 _ x4
c2 = x1 _ x3 _ x8
c3 = x1 _ x8 _ x12
c4 = x2 _ x11
c5 = x3 _ x7 _ x13
c6 = x3 _ x7 _ x13 _ x9
c7 = x8 _ x7 _ x9

d1 = x3 _ x8 _ x7

DL 1 x1 x1, x4[c1]

DL 2 x3 x3, x8[c2], x12[c3], x7[d1]...

DL 3 x2 x2, x11[c4]

DL 4 x7 x7, x13[c5], x9[c6], x9[c7]

Incremental SAT Montpellier - March 2014 10 / 46

Introduction MUS Compilation

Incremental SAT solving : an introduction

A surprising effect of solvers’ efficiency : used as NP-Complete oracles
I IC3 : thousands of calls of simple formulas [Bradley 2012]
I MUS extraction [Belov etal. 2012]
I ...

Many calls on similar instances

CDCL solvers learnt form the PAST ! !

Keep the solver alive

Incremental SAT Montpellier - March 2014 11 / 46

Introduction MUS Compilation

Introduction to BMC

Bounded Model Checking

Verification of properties

Given an automaton with transition states T , an initial state I and a given
property P that must be true at each step

Bound the number of steps (by k), check if P is falsified

General form : I(s0) ^ T (s0, s1) ^ T (s1, s2) ^ . . . ^ T (sk�1, sk) ^ p(sk)

Instance SAT : a bug is found

Instance UNSAT : We know nothing, we need to increase the bound k

a b

cd

t1

t2

t3

t4

Incremental SAT Montpellier - March 2014 12 / 46

Introduction MUS Compilation

Example

a b

cd

t1

t2

t3

t4

a b

cd

a0,a1,. . .

b0,. . . , c0,. . . , d0,. . .

t0
1 ,t1

1 ,t2
1 . . .

t0
1 ,t1

1 ,t2
1 . . .

Step

a
b
e
d

0

F
F
F
T

t0
3 1

F
F
T
F

t1
4 2

F
T
F
F

t2
1 3

T
F
F
F

Incremental SAT Montpellier - March 2014 13 / 46

Introduction MUS Compilation

Example

a b

cd

t1

t2

t3

t4

a b

cd

a0,a1,. . .

b0,. . . , c0,. . . , d0,. . .

t0
1 ,t1

1 ,t2
1 . . .

t0
1 ,t1

1 ,t2
1 . . .

Step

a
b
e
d

0

F
F
F
T

t0
3 1

F
F
T
F

t1
4 2

F
T
F
F

t2
1 3

T
F
F
F

Incremental SAT Montpellier - March 2014 13 / 46

Introduction MUS Compilation

Example

a b

cd

t1

t2

t3

t4

a b

c

d a0,a1,. . .

b0,. . . , c0,. . . , d0,. . .

t0
1 ,t1

1 ,t2
1 . . .

t0
1 ,t1

1 ,t2
1 . . .

Step

a
b
e
d

0

F
F
F
T

t0
3 1

F
F
T
F

t1
4 2

F
T
F
F

t2
1 3

T
F
F
F

Incremental SAT Montpellier - March 2014 13 / 46

Introduction MUS Compilation

Example

a b

cd

t1

t2

t3

t4

a b

c

d a0,a1,. . .

b0,. . . , c0,. . . , d0,. . .

t0
1 ,t1

1 ,t2
1 . . .

t0
1 ,t1

1 ,t2
1 . . .

Step

a
b
e
d

0

F
F
F
T

t0
3

1

F
F
T
F

t1
4 2

F
T
F
F

t2
1 3

T
F
F
F

Incremental SAT Montpellier - March 2014 13 / 46

Introduction MUS Compilation

Example

a b

cd

t1

t2

t3

t4

a b

c

d

a0,a1,. . .

b0,. . . , c0,. . . , d0,. . .

t0
1 ,t1

1 ,t2
1 . . .

t0
1 ,t1

1 ,t2
1 . . .

Step

a
b
e
d

0

F
F
F
T

t0
3 1

F
F
T
F

t1
4 2

F
T
F
F

t2
1 3

T
F
F
F

Incremental SAT Montpellier - March 2014 13 / 46

Introduction MUS Compilation

Example

a b

cd

t1

t2

t3

t4

a

b

cd

a0,a1,. . .

b0,. . . , c0,. . . , d0,. . .

t0
1 ,t1

1 ,t2
1 . . .

t0
1 ,t1

1 ,t2
1 . . .

Step

a
b
e
d

0

F
F
F
T

t0
3 1

F
F
T
F

t1
4 2

F
T
F
F

t2
1 3

T
F
F
F

Incremental SAT Montpellier - March 2014 13 / 46

Introduction MUS Compilation

Example

a b

cd

t1

t2

t3

t4

a

b

cd

a0,a1,. . .

b0,. . . , c0,. . . , d0,. . .

t0
1 ,t1

1 ,t2
1 . . .

t0
1 ,t1

1 ,t2
1 . . .

Step

a
b
e
d

0

F
F
F
T

t0
3 1

F
F
T
F

t1
4 2

F
T
F
F

t2
1 3

T
F
F
F

Incremental SAT Montpellier - March 2014 13 / 46

Introduction MUS Compilation

Example : Resulting clauses

a b

cd

t1

t2

t3

t4

Initial State :
d0

Only one state at each step :
(a0 _ b0 _ c0 _ d0) ^ (¬a0 _ ¬b0) . . . (¬c0 _ ¬d0)
(a1 _ b1 _ c1 _ d1) ^ (¬a1 _ ¬b1) . . . (¬c1 _ ¬d1)
(a2 _ b2 _ c2 _ d2) ^ (¬a2 _ ¬b2) . . . (¬c2 _ ¬d2)
(a3 _ b3 _ c3 _ d3) ^ (¬a3 _ ¬b3) . . . (¬c3 _ ¬d3)

Only one transition at each state :
(t01 _ t02 _ t03 _ t04) ^ (¬t01 _ ¬t02) . . .

(t11 _ t12 _ t13 _ t14) ^ (¬t11 _ ¬t12) . . .

(t21 _ t22 _ t23 _ t24) ^ (¬t21 _ ¬t22) . . .

Transition can occur only if one is on the departure state :
(¬d0 _ t03) ^ (¬cO _ t04) . . .

(¬d1 _ t13) ^ (¬c1 _ t14) . . .
. . .

After a transition, one is on the arrival state :
(¬t03 _ c1) ^ (¬t04 _ b1) . . .

(¬t13 _ c2) ^ (¬t14 _ b2) . . .

Incremental SAT Montpellier - March 2014 14 / 46

Introduction MUS Compilation

Set of Formulas

I(s0) ^ T (s0, s1) ^ (¬p(s1))

I(s0) ^ T (s0, s1) ^T (s1, s2) ^(¬p(s1) _ ¬p(s2))

I(s0) ^ T (s0, s1) ^ T (s1, s2) ^ T (s2, s3) ^ (¬p(s1) _ ¬p(s2) _ ¬p(s3))

I(s0) ^ T (s0, s1) ^ T (s1, s2) ^ T (s2, s3) ^ T (s3, s4)

^(¬p(s1) _ ¬p(s2) _ ¬p(s3) _ ¬p(s4))

. . .

Iterate on the same formula

We need to add variables (very easy)

We need to add clauses (very easy)

We need to remove clauses (harder, see later. . .)

Incremental SAT Montpellier - March 2014 15 / 46

Introduction MUS Compilation

Set of Formulas

I(s0) ^ T (s0, s1) ^ (¬p(s1))

I(s0) ^ T (s0, s1) ^T (s1, s2) ^(¬p(s1) _ ¬p(s2))

I(s0) ^ T (s0, s1) ^ T (s1, s2) ^ T (s2, s3) ^ (¬p(s1) _ ¬p(s2) _ ¬p(s3))

I(s0) ^ T (s0, s1) ^ T (s1, s2) ^ T (s2, s3) ^ T (s3, s4)

^(¬p(s1) _ ¬p(s2) _ ¬p(s3) _ ¬p(s4))

. . .

Iterate on the same formula

We need to add variables (very easy)

We need to add clauses (very easy)

We need to remove clauses (harder, see later. . .)

Incremental SAT Montpellier - March 2014 15 / 46

Introduction MUS Compilation

Set of Formulas

I(s0) ^ T (s0, s1) ^ (¬p(s1))

I(s0) ^ T (s0, s1) ^T (s1, s2) ^(¬p(s1) _ ¬p(s2))

I(s0) ^ T (s0, s1) ^ T (s1, s2) ^ T (s2, s3) ^ (¬p(s1) _ ¬p(s2) _ ¬p(s3))

I(s0) ^ T (s0, s1) ^ T (s1, s2) ^ T (s2, s3) ^ T (s3, s4)

^(¬p(s1) _ ¬p(s2) _ ¬p(s3) _ ¬p(s4))

. . .

Iterate on the same formula

We need to add variables (very easy)

We need to add clauses (very easy)

We need to remove clauses (harder, see later. . .)

Incremental SAT Montpellier - March 2014 15 / 46

Introduction MUS Compilation

Set of Formulas

I(s0) ^ T (s0, s1) ^ (¬p(s1))

I(s0) ^ T (s0, s1) ^T (s1, s2) ^(¬p(s1) _ ¬p(s2))

I(s0) ^ T (s0, s1) ^ T (s1, s2) ^ T (s2, s3) ^ (¬p(s1) _ ¬p(s2) _ ¬p(s3))

I(s0) ^ T (s0, s1) ^ T (s1, s2) ^ T (s2, s3) ^ T (s3, s4)

^(¬p(s1) _ ¬p(s2) _ ¬p(s3) _ ¬p(s4))

. . .

Iterate on the same formula

We need to add variables (very easy)

We need to add clauses (very easy)

We need to remove clauses (harder, see later. . .)

Incremental SAT Montpellier - March 2014 15 / 46

Introduction MUS Compilation

Set of Formulas

I(s0) ^ T (s0, s1) ^ (¬p(s1))

I(s0) ^ T (s0, s1) ^T (s1, s2) ^(¬p(s1) _ ¬p(s2))

I(s0) ^ T (s0, s1) ^ T (s1, s2) ^ T (s2, s3) ^ (¬p(s1) _ ¬p(s2) _ ¬p(s3))

I(s0) ^ T (s0, s1) ^ T (s1, s2) ^ T (s2, s3) ^ T (s3, s4)

^(¬p(s1) _ ¬p(s2) _ ¬p(s3) _ ¬p(s4))

. . .

Iterate on the same formula

We need to add variables (very easy)

We need to add clauses (very easy)

We need to remove clauses (harder, see later. . .)

Incremental SAT Montpellier - March 2014 15 / 46

Introduction MUS Compilation

Incremental SAT : another example

Verification of properties on some circuit

Too large too be fully encoded in SAT

Need to select a sub-circuit and make BMC on it

Use assumptions

Mimic the environment of the larger circuit by imposing assumptions
If the result is satisfiable

I The environment is not set correctly, that is, assumptions are incorrect or missing
I Or, there is a real bug

Incremental SAT Montpellier - March 2014 16 / 46

Introduction MUS Compilation

Working with Assumptions

A formula F

A set of assumptions, `1, `2, . . . , `n with `i are literals

Solve F ^ `1 ^ `2 . . . ^ `n

Incremental SAT solving : the process can be repeated with new assumptions

Incremental SAT Montpellier - March 2014 17 / 46

Introduction MUS Compilation

Working with Assumptions

A formula F

A set of assumptions, `1, `2, . . . , `n with `i are literals

Solve F ^ `1 ^ `2 . . . ^ `n

Incremental SAT solving : the process can be repeated with new assumptions

First solution

Simplify : F 0 = F ^ `1 ^ `2 . . . ^ `n

Solve F 0

Learnt clauses can not be kept

Incremental SAT Montpellier - March 2014 17 / 46

Introduction MUS Compilation

Working with Assumptions

A formula F

A set of assumptions, `1, `2, . . . , `n with `i are literals

Solve F ^ `1 ^ `2 . . . ^ `n

Incremental SAT solving : the process can be repeated with new assumptions

Incremental SAT Montpellier - March 2014 17 / 46

Introduction MUS Compilation

Working with Assumptions

A formula F

A set of assumptions, `1, `2, . . . , `n with `i are literals

Solve F ^ `1 ^ `2 . . . ^ `n

Incremental SAT solving : the process can be repeated with new assumptions

Second Solution

First, selects all assumptions as decision variables :
one level => one assumption

Second, Run the SAT solver as usual

All learnt clauses can be kept

One can explain unsatisfiability wrt set of assumptions !

Incremental SAT Montpellier - March 2014 17 / 46

Introduction MUS Compilation

Working with Assumptions

A formula F

A set of assumptions, `1, `2, . . . , `n with `i are literals

DL 1 `1 x1 x1 x1 x1 x1

DL 2 `2 x1 x1 x1 x1 x1

DL n `n x1 x1 x1 x1 x1

DL n + 1

If ¬`i must be assigned, UNSAT must be returned

Analysis of the reason of ¬`i gives the subset of assumptions responsible of
the conflict

Incremental SAT Montpellier - March 2014 18 / 46

Introduction MUS Compilation

Application to MUS extraction

Incremental SAT Montpellier - March 2014 19 / 46

Introduction MUS Compilation

Minimum Unsatisfiable Subformula

x _ y _ z x _ ¬y x _ ¬z

¬x _ y _ z x _ w w _ z _ ¬y

¬x _ ¬y ¬x _ ¬z w _ ¬x _ ¬z

UNSAT

The formula is inconsistant : Why ?

Minimal unsatisfiable subset of clauses

Different approaches

I Local search [Piette et al, ECAI 2006]
I Resolution based [Nadel, FMCAD 2010]
I Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

Incremental SAT Montpellier - March 2014 20 / 46

Introduction MUS Compilation

Minimum Unsatisfiable Subformula

x _ y _ z x _ ¬y x _ ¬z

¬x _ y _ z x _ w w _ z _ ¬y

¬x _ ¬y ¬x _ ¬z w _ ¬x _ ¬z

The formula is inconsistant : Why ?

Minimal unsatisfiable subset of clauses

Different approaches

I Local search [Piette et al, ECAI 2006]
I Resolution based [Nadel, FMCAD 2010]
I Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

Incremental SAT Montpellier - March 2014 20 / 46

Introduction MUS Compilation

Minimum Unsatisfiable Subformula

x _ y _ z x _ ¬y x _ ¬z

¬x _ y _ z x _ w w _ z _ ¬y

¬x _ ¬y ¬x _ ¬z w _ ¬x _ ¬z

The formula is inconsistant : Why ?

Minimal unsatisfiable subset of clauses
Different approaches

I Local search [Piette et al, ECAI 2006]
I Resolution based [Nadel, FMCAD 2010]
I Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

Incremental SAT Montpellier - March 2014 20 / 46

Introduction MUS Compilation

Minimum Unsatisfiable Subformula

x _ y _ z x _ ¬y x _ ¬z

¬x _ y _ z x _ w w _ z _ ¬y

¬x _ ¬y ¬x _ ¬z w _ ¬x _ ¬z

SAT

The formula is inconsistant : Why ?

Minimal unsatisfiable subset of clauses
Different approaches

I Local search [Piette et al, ECAI 2006]
I Resolution based [Nadel, FMCAD 2010]
I Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

Incremental SAT Montpellier - March 2014 20 / 46

Introduction MUS Compilation

Minimum Unsatisfiable Subformula

x _ y _ z x _ ¬y x _ ¬z

¬x _ y _ z x _ w w _ z _ ¬y

¬x _ ¬y ¬x _ ¬z w _ ¬x _ ¬z

The formula is inconsistant : Why ?

Minimal unsatisfiable subset of clauses
Different approaches

I Local search [Piette et al, ECAI 2006]
I Resolution based [Nadel, FMCAD 2010]
I Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

Incremental SAT Montpellier - March 2014 20 / 46

Introduction MUS Compilation

Minimum Unsatisfiable Subformula

x _ y _ z x _ ¬y x _ ¬z

¬x _ y _ z x _ w w _ z _ ¬y

¬x _ ¬y ¬x _ ¬z w _ ¬x _ ¬z

The formula is inconsistant : Why ?

Minimal unsatisfiable subset of clauses
Different approaches

I Local search [Piette et al, ECAI 2006]
I Resolution based [Nadel, FMCAD 2010]
I Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

Incremental SAT Montpellier - March 2014 20 / 46

Introduction MUS Compilation

Minimum Unsatisfiable Subformula

x _ y _ z x _ ¬y x _ ¬z

¬x _ y _ z x _ w w _ z _ ¬y

¬x _ ¬y ¬x _ ¬z w _ ¬x _ ¬z

UNSAT

The formula is inconsistant : Why ?

Minimal unsatisfiable subset of clauses
Different approaches

I Local search [Piette et al, ECAI 2006]
I Resolution based [Nadel, FMCAD 2010]
I Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

Incremental SAT Montpellier - March 2014 20 / 46

Introduction MUS Compilation

Minimum Unsatisfiable Subformula

x _ y _ z x _ ¬y x _ ¬z

¬x _ y _ z x _ w w _ z _ ¬y

¬x _ ¬y ¬x _ ¬z w _ ¬x _ ¬z

UNSAT

The formula is inconsistant : Why ?

Minimal unsatisfiable subset of clauses
Different approaches

I Local search [Piette et al, ECAI 2006]
I Resolution based [Nadel, FMCAD 2010]
I Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

Incremental SAT Montpellier - March 2014 20 / 46

Introduction MUS Compilation

Minimum Unsatisfiable Subformula

x _ y _ z x _ ¬y x _ ¬z

¬x _ y _ z x _ w w _ z _ ¬y

¬x _ ¬y ¬x _ ¬z w _ ¬x _ ¬z

MUS !

The formula is inconsistant : Why ?

Minimal unsatisfiable subset of clauses
Different approaches

I Local search [Piette et al, ECAI 2006]
I Resolution based [Nadel, FMCAD 2010]
I Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

Incremental SAT Montpellier - March 2014 20 / 46

Introduction MUS Compilation

Muser Architecture

Incremental SAT

MUSER (⌃) Solver(⌃0)
⌃0 ✓ ⌃

SAT/UNSAT

MUS

Successive calls to a SAT oracle

Non independent calls
Informations between two calls are preserved

I Heuristics : VSIDS, phase saving, restarts...
I

Learnt clauses

Incremental SAT Montpellier - March 2014 21 / 46

Introduction MUS Compilation

Forget some clauses

Add one selector (fresh variable) `i per clause

`1 _ x _ y _ z `2 _ x _ ¬y `3 _ x _ ¬z
`4 _ ¬x _ y _ z `5 _ x _ w `6 _ w _ z _ ¬y
`7 _ ¬x _ ¬y `8 _ ¬x _ ¬z `9 _ w _ ¬x _ ¬z

`1 _ x _ y _ z `2 _ x _ ¬y

`1 _ `2 _ x _ z

Learnt clause contains selectors of all original clauses used to generate it

Incremental SAT Montpellier - March 2014 22 / 46

Introduction MUS Compilation

Forget some clauses

Assign `i (as an assumption) to false to activate the clause i

Assign `j (as an assumption) to true to disable the clause j

All learnt clauses related to the clause j a disable clause are disabled too !

`1_x _ y _ z
`2 _x _ ¬y
`3 _ x _ ¬z
`4 _ ¬x _ y _ z
`5 _ x _ w
`6 _ w _ z _ ¬y
`7 _ ¬x _ ¬y
`8 _ ¬x _ ¬z
`9 _ w _ ¬x _ ¬z

`1_`2 _ x _ z

DL 1 `1 x1 x1 x1 x1 x1

DL 2 `2 x1 x1 x1 x1 x1

Incremental SAT Montpellier - March 2014 23 / 46

Introduction MUS Compilation

Forget some clauses

Assign `i (as an assumption) to false to activate the clause i

Assign `j (as an assumption) to true to disable the clause j

All learnt clauses related to the clause j a disable clause are disabled too !

`1_x _ y _ z
`2 _x _ ¬y
`3 _ x _ ¬z
`4 _ ¬x _ y _ z
`5 _ x _ w
`6 _ w _ z _ ¬y
`7 _ ¬x _ ¬y
`8 _ ¬x _ ¬z
`9 _ w _ ¬x _ ¬z

`1_`2 _ x _ z

DL 1 `1 x1 x1 x1 x1 x1

DL 2 `2 x1 x1 x1 x1 x1

Incremental SAT Montpellier - March 2014 23 / 46

Introduction MUS Compilation

Forget some clauses

Assign `i (as an assumption) to false to activate the clause i

Assign `j (as an assumption) to true to disable the clause j

All learnt clauses related to the clause j a disable clause are disabled too !

`1_x _ y _ z
`2 _x _ ¬y
`3 _ x _ ¬z
`4 _ ¬x _ y _ z
`5 _ x _ w
`6 _ w _ z _ ¬y
`7 _ ¬x _ ¬y
`8 _ ¬x _ ¬z
`9 _ w _ ¬x _ ¬z

`1_`2 _ x _ z

DL 1 `1 x1 x1 x1 x1 x1

DL 2 `2 x1 x1 x1 x1 x1

Incremental SAT Montpellier - March 2014 23 / 46

Introduction MUS Compilation

Forget some clauses

Assign `i (as an assumption) to false to activate the clause i

Assign `j (as an assumption) to true to disable the clause j

All learnt clauses related to the clause j a disable clause are disabled too !

`1_x _ y _ z
`2 _x _ ¬y
`3 _ x _ ¬z
`4 _ ¬x _ y _ z
`5 _ x _ w
`6 _ w _ z _ ¬y
`7 _ ¬x _ ¬y
`8 _ ¬x _ ¬z
`9 _ w _ ¬x _ ¬z

`1_`2 _ x _ z

DL 1 `1 x1 x1 x1 x1 x1

DL 2 `2 x1 x1 x1 x1 x1

Incremental SAT Montpellier - March 2014 23 / 46

Introduction MUS Compilation

Forget some clauses

Assign `i (as an assumption) to false to activate the clause i

Assign `j (as an assumption) to true to disable the clause j

All learnt clauses related to the clause j a disable clause are disabled too !

`1_x _ y _ z
`2 _x _ ¬y
`3 _ x _ ¬z
`4 _ ¬x _ y _ z
`5 _ x _ w
`6 _ w _ z _ ¬y
`7 _ ¬x _ ¬y
`8 _ ¬x _ ¬z
`9 _ w _ ¬x _ ¬z

`1_`2 _ x _ z

DL 1 `1 x1 x1 x1 x1 x1

DL 2 `2 x1 x1 x1 x1 x1

Incremental SAT Montpellier - March 2014 23 / 46

Introduction MUS Compilation

Forget some clauses

Assign `i (as an assumption) to false to activate the clause i

Assign `j (as an assumption) to true to disable the clause j

All learnt clauses related to the clause j a disable clause are disabled too !

`1_x _ y _ z
`2 _x _ ¬y
`3 _ x _ ¬z
`4 _ ¬x _ y _ z
`5 _ x _ w
`6 _ w _ z _ ¬y
`7 _ ¬x _ ¬y
`8 _ ¬x _ ¬z
`9 _ w _ ¬x _ ¬z

`1_`2 _ x _ z

DL 1 `1 x1 x1 x1 x1 x1

DL 2 `2 x1 x1 x1 x1 x1

Incremental SAT Montpellier - March 2014 23 / 46

Introduction MUS Compilation

Forget some clauses

Assign `i (as an assumption) to false to activate the clause i

Assign `j (as an assumption) to true to disable the clause j

All learnt clauses related to the clause j a disable clause are disabled too !

`1_x _ y _ z
`2 _x _ ¬y
`3 _ x _ ¬z
`4 _ ¬x _ y _ z
`5 _ x _ w
`6 _ w _ z _ ¬y
`7 _ ¬x _ ¬y
`8 _ ¬x _ ¬z
`9 _ w _ ¬x _ ¬z

`1_`2 _ x _ z

DL 1 `1 x1 x1 x1 x1 x1

DL 2 `2 x1 x1 x1 x1 x1

Incremental SAT Montpellier - March 2014 23 / 46

Introduction MUS Compilation

Glucose inside Muser

MUSER (⌃) MINISAT (⌃0)
⌃0 ✓ ⌃

GLUCOSE (⌃0)
⌃0 ✓ ⌃

SAT/UNSAT

MUS

Plug GLUCOSE in MUSER

Adapt and modify GLUCOSE to improve MUSER performances

Improve SAT oracle in order to improve the MUSER tool

Incremental SAT Montpellier - March 2014 24 / 46

Introduction MUS Compilation

Glucose inside Muser

MUSER (⌃)

MINISAT (⌃0)
⌃0 ✓ ⌃

GLUCOSE (⌃0)
⌃0 ✓ ⌃

SAT/UNSAT

MUS

Plug GLUCOSE in MUSER

Adapt and modify GLUCOSE to improve MUSER performances

Improve SAT oracle in order to improve the MUSER tool
Incremental SAT Montpellier - March 2014 24 / 46

Introduction MUS Compilation

Test set

300 instances from the SAT competition 2011, MUS category

timeout set to 2400 seconds

MUSER is used with default options (destructive approach, model rotation)

Incremental SAT Montpellier - March 2014 25 / 46

Introduction MUS Compilation

A first Attempt

 1

 10

 100

 1000

 1 10 100 1000

Minisat
(273 solved)

Glucose 2.1
(261 solved)

(259 points)

Resolution time

Incremental SAT Montpellier - March 2014 26 / 46

Introduction MUS Compilation

Disappointing results

Trying to explain these bad results

Comparable number of oracle calls

Easy SAT calls

Difficult UNSAT ones

GLUCOSE is supposed to be good on UNSAT formulas

GLUCOSE uses LBD for cleaning, restarts...

Each assumption uses its own decision level

The LBD of a clause looks like its size !

Refine LBD : Do not take into account selectors

Incremental SAT Montpellier - March 2014 27 / 46

Introduction MUS Compilation

Disappointing results

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Minisat
(273 solved)

Glucose 2.1
(261 solved)

(259 points)

Nb SAT calls

Incremental SAT Montpellier - March 2014 27 / 46

Introduction MUS Compilation

Disappointing results

Trying to explain these bad results

Comparable number of oracle calls

Easy SAT calls

Difficult UNSAT ones

GLUCOSE is supposed to be good on UNSAT formulas

GLUCOSE uses LBD for cleaning, restarts...

Each assumption uses its own decision level

The LBD of a clause looks like its size !

Refine LBD : Do not take into account selectors

Incremental SAT Montpellier - March 2014 27 / 46

Introduction MUS Compilation

Disappointing results

Trying to explain these bad results

Comparable number of oracle calls

Easy SAT calls

Difficult UNSAT ones

GLUCOSE is supposed to be good on UNSAT formulas

GLUCOSE uses LBD for cleaning, restarts...

Each assumption uses its own decision level

The LBD of a clause looks like its size !

Refine LBD : Do not take into account selectors

Incremental SAT Montpellier - March 2014 27 / 46

Introduction MUS Compilation

Disappointing results
Each point represents an instance
x-axis is the average number of initial variables in learnt clauses
y-axis is the average number of selector variables in learnt clauses

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250 300 350 400 450 500

as
su

m
p

ti
o

n

initialIncremental SAT Montpellier - March 2014 27 / 46

Introduction MUS Compilation

Disappointing results

LBD

size LBD
Instance #C time avg max avg max

fdmus_b21_96 8541 29 1145 5980 1095 5945
longmult6 8853 46 694 3104 672 3013
dump_vc950 360419 110 522 36309 498 35873
g7n 70492 190 1098 16338 1049 16268

LBD looks like size

Clauses are very long

Incremental SAT Montpellier - March 2014 27 / 46

Introduction MUS Compilation

Disappointing results

Trying to explain these bad results

Comparable number of oracle calls

Easy SAT calls

Difficult UNSAT ones

GLUCOSE is supposed to be good on UNSAT formulas

GLUCOSE uses LBD for cleaning, restarts...

Each assumption uses its own decision level

The LBD of a clause looks like its size !

Refine LBD : Do not take into account selectors

Incremental SAT Montpellier - March 2014 27 / 46

Introduction MUS Compilation

Disappointing results

Trying to explain these bad results

Comparable number of oracle calls

Easy SAT calls

Difficult UNSAT ones

GLUCOSE is supposed to be good on UNSAT formulas

GLUCOSE uses LBD for cleaning, restarts...

Each assumption uses its own decision level

The LBD of a clause looks like its size !

Refine LBD : Do not take into account selectors
Incremental SAT Montpellier - March 2014 27 / 46

Introduction MUS Compilation

A second attempt

 1

 10

 100

 1000

 1 10 100 1000

Minisat
(273 solved)

Glucose New LBD
(272 solved)

(267 points)

Resolution time

Incremental SAT Montpellier - March 2014 28 / 46

Introduction MUS Compilation

New LBD

LBD New LBD

size LBD size LBD
Instance #C time avg max avg max time avg max avg max

fdmus_b21_96 8541 29 1145 5980 1095 5945 11 972 6391 8 71
longmult6 8853 46 694 3104 672 3013 14 627 2997 11 61
dump_vc950 360419 110 522 36309 498 35873 67 1048 36491 8 307
g7n 70492 190 1098 16338 1049 16268 75 1729 17840 27 160

LBD matters

However, results need to be improve yet

Incremental SAT Montpellier - March 2014 29 / 46

Introduction MUS Compilation

Clauses are too long

Many algorithms have to traverse clauses

Dynamic computing of LBD (useful but costly)

! Store the number of selectors in the clause
! Stop when all initial literals have been tested

Conflict analysis

! Force initial literals to be placed at the beginning

Unit propagation

! Look for a non selector literal or a satisfied one
! Push selectors at the end of the clause

Deleting satisfiable clauses

! Take only watched literals into account

Incremental SAT Montpellier - March 2014 30 / 46

Introduction MUS Compilation

Clauses are too long

Many algorithms have to traverse clauses

Dynamic computing of LBD (useful but costly)
! Store the number of selectors in the clause
! Stop when all initial literals have been tested

Conflict analysis

! Force initial literals to be placed at the beginning

Unit propagation

! Look for a non selector literal or a satisfied one
! Push selectors at the end of the clause

Deleting satisfiable clauses

! Take only watched literals into account

Incremental SAT Montpellier - March 2014 30 / 46

Introduction MUS Compilation

Clauses are too long

Many algorithms have to traverse clauses

Dynamic computing of LBD (useful but costly)
! Store the number of selectors in the clause
! Stop when all initial literals have been tested

Conflict analysis
! Force initial literals to be placed at the beginning

Unit propagation

! Look for a non selector literal or a satisfied one
! Push selectors at the end of the clause

Deleting satisfiable clauses

! Take only watched literals into account

Incremental SAT Montpellier - March 2014 30 / 46

Introduction MUS Compilation

Clauses are too long

Many algorithms have to traverse clauses

Dynamic computing of LBD (useful but costly)
! Store the number of selectors in the clause
! Stop when all initial literals have been tested

Conflict analysis
! Force initial literals to be placed at the beginning

Unit propagation
! Look for a non selector literal or a satisfied one
! Push selectors at the end of the clause

Deleting satisfiable clauses

! Take only watched literals into account

Incremental SAT Montpellier - March 2014 30 / 46

Introduction MUS Compilation

Clauses are too long

Many algorithms have to traverse clauses

Dynamic computing of LBD (useful but costly)
! Store the number of selectors in the clause
! Stop when all initial literals have been tested

Conflict analysis
! Force initial literals to be placed at the beginning

Unit propagation
! Look for a non selector literal or a satisfied one
! Push selectors at the end of the clause

Deleting satisfiable clauses
! Take only watched literals into account

Incremental SAT Montpellier - March 2014 30 / 46

Introduction MUS Compilation

Third attempt

 1

 10

 100

 1000

 1 10 100 1000

Minisat
(273 solved)

Glucose Inc
(288 solved)

(273 points)

Resolution time

Incremental SAT Montpellier - March 2014 31 / 46

Introduction MUS Compilation

Final comparison

 0

 500

 1000

 1500

 2000

 2500

 180 200 220 240 260 280 300

tim
e

nb instances

minisat
glucose

New LBD
glucoseInc

Incremental SAT Montpellier - March 2014 32 / 46

Introduction MUS Compilation

Application to knowledge compilation

Incremental SAT Montpellier - March 2014 33 / 46

Introduction MUS Compilation

Autonomous Systems

Autonomous system : must be able to make decisions depending on the
current situation

Finding the decision policy

Problem hard to solve

Explorer Robot
Explore a zone

Gather informations

When enough informations have been gathered, go to another zone

Slides from Alexandre Niveau’s PhD defense

Incremental SAT Montpellier - March 2014 34 / 46

Introduction MUS Compilation

Control of an Autonomous Systems

Solving the problem online

Limited by the embedded computational power

Reactivity not ensured

Solving the problem offline

Anticipate all decisions for every possible situation

Reactivity is ensured

Limited by embedded memory ressources

Slides from Alexandre Niveau’s PhD defense

Incremental SAT Montpellier - March 2014 35 / 46

Introduction MUS Compilation

Looking for a Compromise

Need a tradeoff between reactivity and spatial compactness

Maximizing reactivity under memory space constraints

This is the object of knowledge compilation

Idea
Transform the problem into a compiled form

Make its resolution tractable

Is as compact as possible

Slides from Alexandre Niveau’s PhD defense

Incremental SAT Montpellier - March 2014 36 / 46

Introduction MUS Compilation

Two phases

Offline phase
Theory is compiled into a target language

Can be slow

Need to be compact

Some target languages : (RO)BDD, Tree of BD, DNNF, DNNF, SDD

Online phase
The compiled target is used to efficiently answer a number of queries

Need to be fast (polynomial ? ?)

Incremental SAT Montpellier - March 2014 37 / 46

Introduction MUS Compilation

Some Queries

Consistency (F |= ??)

Clause entailment (F |= c?)

Implicant (t |= F?)

Equivalence (F ⌘ G?)

Sentential Entailment (F |= G?)

Model Counting

Model Enumeration

Incremental SAT Montpellier - March 2014 38 / 46

Introduction MUS Compilation

Some Operators

Conditioning : subset of variables is set to true/false

Forgetting : Some variables are removed

Conjunction : F ^ G

Disjunction F _ G

Negation ¬F

Incremental SAT Montpellier - March 2014 39 / 46

Introduction MUS Compilation

Knowledge Compilation Map

"A Knowledge Compilation Map". Adnan Darwiche, Pierre Marquis. J. Artif.
Intell. Res. (JAIR) 17 : 229-264 (2002)

p
: polynomial query

� no polynomial unless P = NP

Incremental SAT Montpellier - March 2014 40 / 46

Introduction MUS Compilation

Knowledge Compilation Map

"A Knowledge Compilation Map". Adnan Darwiche, Pierre Marquis. J. Artif.
Intell. Res. (JAIR) 17 : 229-264 (2002)

p
: polynomial

� no polynomial unless P = NP

• no polynomial

Incremental SAT Montpellier - March 2014 41 / 46

Introduction MUS Compilation

Our Proposal

Forget offline phase

Use (incremental) SAT

No theoretical guarantee about effectiveness

Practical guarantee about effectiveness ?

Clause entailment is easy : F ^ ¬c, ¬c is treated with assumptions

Implicant (quite easy)

Model counting, possible but. . .

Conditioning is easy (use assumptions), conjunction also

Forgetting is more difficult to handle

Incremental SAT Montpellier - March 2014 42 / 46

Introduction MUS Compilation

Our Proposal

Forget offline phase

Use (incremental) SAT

No theoretical guarantee about effectiveness

Practical guarantee about effectiveness ?

Clause entailment is easy : F ^ ¬c, ¬c is treated with assumptions

Implicant (quite easy)

Model counting, possible but. . .

Conditioning is easy (use assumptions), conjunction also

Forgetting is more difficult to handle

Incremental SAT Montpellier - March 2014 42 / 46

Introduction MUS Compilation

Our Proposal

Forget offline phase

Use (incremental) SAT

No theoretical guarantee about effectiveness

Practical guarantee about effectiveness ?

Clause entailment is easy : F ^ ¬c, ¬c is treated with assumptions

Implicant (quite easy)

Model counting, possible but. . .

Conditioning is easy (use assumptions), conjunction also

Forgetting is more difficult to handle

Incremental SAT Montpellier - March 2014 42 / 46

Introduction MUS Compilation

Some Experiments

First experiments with benchmarks from ToBDD paper : Too easy !

Pick some SAT benchmarks from the SAT competition 2011

Performing 10,000 random queries (Clause Entailment)

Instance Incremental No Incremental ToBDD

#V #C time avg unit lits conflicts time avg conflicts Time

106,815 552,819 2,088 0.2 4,652 1,169 TO > 5,000 –
17,914 147,360 14 0.001 13,945 85 403 0.4 4,000 10
81,184 4,547,858 1,046 0.1 8,987 4,371 TO >15,000 –
42,375 262,415 101 0.01 12,744 3,288 TO >13,000 –
42,608 212,741 482 0.04 0 2,805 730 0.7 1,042 –

Incremental SAT Montpellier - March 2014 43 / 46

Introduction MUS Compilation

Amortization

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim
e

nb Queries

12pipe_bug6_q0.used-as.sat04-725
AProVE11-02

SAT_dat.k80_04
smtlib-qfbv-aigs-bin_libmsrpc...

Incremental SAT Montpellier - March 2014 44 / 46

Introduction MUS Compilation

Conclusion

Incremental SAT solving

CDCL SAT solvers learn from the past

Keep the solver alive ! !

Possibility to add variables and clauses

Possibility to remove clauses

Many potential applications

Incremental SAT Montpellier - March 2014 45 / 46

Introduction MUS Compilation

Some references

"Incremental SAT solving". J. Hooker. J. Log. Program. 15 : 177-186 (1993).

"Pruning Techniques for the SAT-Based Bounded Model Checking Problem". O. Strichman. CHARME
2001 : 58-70.

"SATIRE : A New Incremental Satisfiability Engine". J. Whittemore, J. Kim, K. Sakallah. DAC 2001 : 542-
545.

" Temporal induction by incremental SAT solving. N. Eén, N. Sörensson. Electr. Notes Theor. Comput. Sci.
89(4) : 543-560 (2003).

"Efficient SAT Solving under Assumptions". A. Nadel, V. Ryvchin. . SAT 2012 : 242-255.

"Preprocessing in Incremental SAT ". A. Nadel, V. Ryvchin, O. Strichman. SAT 2012 : 256-269

"Improving Glucose for Incremental SAT Solving with Assumptions : Application to MUS Extraction". G.
Audemard, JM. Lagniez, L. Simon. SAT 2013 : 309-317.

"Just-In-Time Compilation of Knowledge Bases". G. Audemard, JM. Lagniez, L. Simon. IJCAI 2013.

Incremental SAT Montpellier - March 2014 46 / 46

	Introduction
	MUS
	Compilation

